Spelling suggestions: "subject:"cleavage"" "subject:"autocleavage""
21 |
Substrate-Selective Copper Catalysts as Catalytic Metallodrugs: from G-Quadruplex Targeting Small-Molecular Nucleases to Artificial GlycosidasesYu, Zhen 07 December 2017 (has links)
No description available.
|
22 |
Studies on Photocytotoxic Iron(III) and Cobalt(III) Complexes Showing Structure-Activity RelationshipSaha, Sounik January 2010 (has links) (PDF)
Photodynamic therapy(PDT) has recently emerged as a promising new non-invasive treatment modality for a large number of neoplastic and non-neoplastic lesions. Photoexcitation of a photosensitizing drug in the tumor tissue causes generation of reactive oxygen species which results in cell death. The current porphyrinic photosensitizers suffer a wide range of drawbacks leading to the development of the chemistry of alternative photosensitizing agents in PDT. Among them, the 4d and 5d transition metal-based photosensitizers have been explored extensively with the exception of the 3d metal complexes. The objective of this thesis work is to design and synthesize photoactive iron(III) abd cobalt(III) complexes and evalutate their photonuclease and photocytotoxic potential.
Bioessential 3d metal ions provide an excellent platform for metal-based PDT drug designing as because of its varied spectral, magnetic and redox properties, with its complexes possessing rich photochemical behavior in aqueous and non-aqueous media. We have synthesized binary iron(III) complexes as netropsin mimics using amino acid Schiff bases derived from salicylaldehyde/napthaldehyde and arginine/lysine. The complexes were found to be good AT selective DNA binders and exhibited significant DNA photocleavage activity. To enhance the photodynamic potential, we further synthesized iron(III) complexes of phenolate-based ligand and planar phenanthroline bases. The DNA photocleavage activity of these complexes and their photocytotoxic potential in cancer models were studied. ROS generated by these complexes were found to induce apoptotic cell death. Ternary cobalt(III) complexes were synthesized to study the effect of the central metal atom. The diamagnetic cobalt(III) complexes were structurally dissimilar to their iron(III) analogues. Although the Co(III)/Co(II) redox couple is chemically and photochemically accessible but the Co(III)-dppz complex, unlike its iron(III)-dppz analogue, exhibited selective damage to hTSHR expressing cells but not in HeLa cells. A structure-activity relationship study on iron(III) phenolates having modified dppz ligands was carried out and it was found that electron donating group on the phenazine unit and an increase of the aromatic surface area largely improved the PDT efficiency. Finally, SMVT targeted iron(III) complexes with biotin as targeting moiety were synthesized and the in vitro efficacy of the complexes was tested in HepG2 cells over-expressing SMVTs and compared to HeLa amd HEK293 cells. The complexes exhibited higher phytocytotoxicity in HepG2 than in HeLa and cells and HEK293 cells. An endocytotic mode of uptake took place in HepG2 cells whereas in HEK293 cells, uptake is purely by diffusion. This is expected to reduce the side-effects and have less effect on cells with relatively less SMVTs.
In summary, the present research work opens up novel strategies for the design and development of primarily iron-based photosensitizers for their potential applications in PDT with various targeting moieties.
|
23 |
DNA Cleavage By Type III Restriction Enzyme EcoP151 : Properties, Mechanism And ApplicationRaghavendra, N K 02 1900 (has links) (PDF)
No description available.
|
24 |
Studies On The Cobalt And Complexes Showing Anaerobic DNA Photocleavage ActivityLahiri, Debojyoti 06 1900 (has links) (PDF)
Photodynamic therapy (PDT) is a non-invasive treatment of cancer with an advantage of
having localized photo-activation of the drug at the targeted tumor cells leaving the healthy cells unaffected by the photo-toxicity of the PDT agent. Organic molecules and 4d/5d metal complexes have been extensively studied for their DNA cleavage activity and photo-cytotoxicity in UV and/or visible light. The photoactivity of the current PDT drugs is due to reactive singlet oxygen species. To address the hypoxic nature within neoplasia and to get a realistic scenario to build model and potent PDT agents, attempts have been made in this thesis work to design and synthesize new cobalt and copper complexes having a variety of ancillary ligands and planar phenanthroline bases showing efficient visible light-induced anaerobic plasmid DNA cleavage activity. The disulfide and thiol compounds are known to generate thyil radical in anaerobic medium in presence of some electron donating solvent. To exploit this chemistry of the sulfur anion radical as a reactive species damaging DNA under light irradiation, we have prepared copper(II) complexes of bis(2-hydroxybenzylamino-ethyl)disulfide and D-penicillaminedisulfide and characterized. The complexes are moderate binders to calf thymus DNA and exhibit plasmid DNA cleavage activity in red light. Near-IR light-induced double-strand DNA cleavage activity is observed for the complexes having 3,3' -dithiodipropionic acid and phenanthroline bases. These complexes show lethal double strand breaks in SC DNA responsible for the inhibition in DNA repair mechanism in the cells thus becoming potent candidates as transcription inhibitors. The work has been extended to achieve better visible light-induced plasmid DNA cleavage activity and UV light-induced photocytotoxicity using a more bio-compatible metal ion, viz. cobalt(II) with the same ligand system and enhancement in the photocytotoxicity is observed. To
investigate the role of the disulfide ancillary ligands, complexes of salicylideneaminothiophenol bound to the copper(II) are prepared and the complexes show significant plasmid DNA cleavage
activity in red light. Finally, ternary cobalt(III) phenanthroline base complexes are prepared to study their DNA cleavage activity in red light and photo-cytotoxicity in UV light. The complexes show efficient plasmid DNA cleavage activity in red light, significant cytotoxicity in UV light, low dark cytotoxicity, and protein (BSA, lysozyme) cleavage activity in UV light. The
mechanistic aspects of the photo-induced DNA and protein cleavage activity of the complexes have been studied. A dual involvement of the charge transfer and d-d band is observed in the photosensitization process leading to generation of reactive oxygen species.
In summary, the thesis work presents cobalt and copper complexes having thiolate and
disulfide moieties that are designed and synthesized as new photodynamic therapeutic agents showing anaerobic DNA cleavage activity in red light and photocytotoxicity. The present study opens up new strategies for designing and developing cobalt and copper based photosensitizers for their potential photochemotherapeutic applications under hypoxic reaction conditions.
References: Lahiri, D. et al., J Chern. Sci, 2010, 122, 321-333; Inorg. Chern., 2009, 48, 339-349; Dalton Trans. 2010,39,1807-1816; Polyhedron, 2010, 29, 2417-2425.
|
25 |
Studies on Near-IR Light Photocytotoxic Oxovanadium ComplexesPrasad, Puja January 2013 (has links) (PDF)
The present thesis deals with different aspects of the chemistry of oxovanadium(IV) complexes, their interaction with double stranded DNA, photo-induced DNA cleavage, photo-enhanced cytotoxicity in visible light and red light and localisation and cellular uptake to understand the mechanism of cell death.
Chapter I presents a general introduction on potential of transition metal complexes as photochemotherapeutic agents. A brief introduction about Photodynamic Therapy (PDT) as a new alternative to chemotherapy for treating cancer has been made. Various modes of interaction of small molecules with duplex DNA are described. Recent reports on metal-based photocytotoxicity, photo-induced DNA cleavage activity and cellular localization are presented in detail. Objective of the present investigation is also dealt in this Chapter.
Chapter II of the thesis deals with the synthesis, characterization, DNA binding and photo-induced DNA cleavage activity of ternary oxovanadium(IV) complexes of ONO-donor 2-(2-hydroxybenzylideneamino)phenol (salamp) and phenanthroline bases to explore the photo-induced DNA cleavage activity in UV-A light of 365 nm and photocytotoxicity in visible light.
Chapter III deals with the photo-induced DNA cleavage and photocytotoxicity of ternary oxovanadium(IV) complexes containing ONN-donor N-2-pyridylmethylidine-2-hydroxyphenylamine (Hpyamp) Schiff bases and phenanthroline bases. The objective of this work is to investigate the photo-induced DNA cleavage activity in near-IR light. Photocytotoxicity and cell cycle arrest have been studied in HeLa cancer cells.
Chapter IV deals serendipitous discovery of planar triazinuim cationic species by vanadyl-assisted novel ring cyclization reaction. The compounds are synthesised, characterized and their DNA binding and anaerobic photoinduced DNA cleavage activity are presented. The importance of the thiazole moiety in the triazinuim species
in cellular uptake has been investigated. Photocytotoxicity, localization and cell death mechanism have been studied in HeLa and MCF-7 cells.
Chapter V describes the synthesis, characterization, DNA binding, photo-induced DNA cleavage activity and photocytotoxicity of oxovanadium(IV) complexes containing 2-(1H-benzimidazol-2-yl)-N-(pyridin-2-ylmethylene)ethaneamine (Hpy-aebmz) and curcumin as photosensitizer. The effect of conjugating naphthalimide on Hpy-aebmz on photoinduced DNA cleavage and photocytotoxicity has been studied. Cellular uptake, localization and mechanism of cell death induced by complexes have been investigated.
Chapter VI presents ternary oxovanadium(IV) complexes having, 2-((1H-benzimidazol-2-yl)methylimino-methyl)phenol (Hsal-ambmz) and phenanthroline bases. The complexes were synthesized, characterized and their DNA binding property studied. Photo-induced DNA cleavage activity and photocytotoxicity in red light has been discussed. Anthracene has been conjugated to a tridentate ligand to investigate cellular uptake, localization and cell death mechanism. Mitochondria targeting property of the complexes having dipeptide has been studied and compared with clinically used drug Photofrin®.
The references have been compiled at the end of each chapter and indicated as superscript numbers in the text. The complexes presented in this thesis are represented by bold-faced numbers. Crystallographic data of the complexes, characterized structurally by single crystal X-ray crystallography, are given in CIF format in the enclosed CD (Appendix-I). Due acknowledgements have been made wherever the work described is based on the findings of other investigators. Any unintentional omission that might have happened due to oversight or mistake is regretted.
|
26 |
Chemistry Of Ferrocene Conjugates Showing DNA Cleavage And Photocytotoxic ActivityMaity, Basudev 07 1900 (has links) (PDF)
Ferrocene is an important molecule in the field of chemical biology due to its stability, unique redox property and significant lipophilicity for better cellular delivery. The medicinal importance of ferrocene is well recognized after its successful incorporation into breast cancer drug tamoxifen and antimalarial drug chloroquin. Designing ferrocene conjugated transition metal complexes is an interesting area of research in the field of photodynamic therapy, a new modality of light activated cancer treatment. The objective of the present thesis work is to develop photoactive ferrocene conjugates showing DNA photocleavage and photocytotoxic activity.
We have synthesized the ferrocene conjugated imidazophenanthroline derivative which exhibits visible light induced DNA photocleavage activity and photocytotoxicity in HeLa cell line. The corresponding phenyl analogue is found to be inactive. Polypyridyl platinum(II) complexes of ferrocenyl as well as phenyl moiety are prepared and studied their interactions with calf thymus DNA. The cytotoxicity of the complexes enhance significantly upon irradiation of UV-A light of 365 nm. To enhance the photodynamic potential and to understand the role of organometallic ferrocenyl moiety, ferrocene conjugated terpyridyl copper(II) complexes having planar phenanthroline bases are prepared. The interaction of these complexes with duplex DNA and their photo-induced DNA cleavage and anticancer activity in HeLa cancer cells are studied. The complexes are able to generate ROS in the presence of visible light which causes DNA damage as well as cell death. The importance of ferrocenyl moiety is evidenced from the less activity of the corresponding phenyl analogues complex. We have prepared copper(II) complexes of ferrocenyl methyl dipicolylamine ligand to understand the role of terpyridyl moiety. These complexes lacking any conjugation between the copper(II) and the ferrocenyl moiety are found to be less active compared to the terpyridyl conjugated system. The copper(II) complexes are found to show undesirable dark cytotoxicity in the presence of cellular thiols like GSH. To overcome the dark toxicity problem and to understand the mechanistic aspects of DNA photocleavage and photocytotoxicity, a series of binary ferrocene conjugated terpyridyl complexes of Fe(II), Co(II), Cu(II) and Zn(II) are prepared and their DNA photocleavage and anticancer activity studied. The zinc(II) complex having redox-active ferrocenyl moiety and redox-inactive zinc(II) center exhibits significant PDT effect with low dark toxicity compared to its copper(II) analogue. The ferrocenyl moiety plays an important role towards showing photocytotoxic activity since its phenyl analogue is inactive in nature.
Finally, the present thesis work opens up a new strategy for designing and developing new ferrocene based metal complexes as novel photosensitizers for PDT applications.
|
27 |
Studies On Lanthanide Complexes Showing Photo-activated DNA Cleavage And Anticancer ActivityHussain, Akhtar 12 1900 (has links) (PDF)
This thesis work deals with different aspects of the chemistry of La(III) and Gd(III) complexes, their interaction with DNA and proteins, photo-induced cleavage of double-stranded DNA, photocytotoxic effect on cancer cells, cell death mechanism and cellular localization behaviour.
Chapter I gives an introduction to the metal-based anticancer agents with special emphasis on clinically used drugs and the growing field of lanthanide therapeutics. An overview of the current strategies of cancer treatment, especially photodynamic therapy (PDT), is presented. Mode of small molecule-DNA interactions and the mechanistic aspects associated with DNA photodamage reactions and PDT effect are discussed with selected examples of compounds that are known to photocleave DNA on exposure to light of different wavelengths. A brief discussion on the various therapeutic applications of the lanthanide compounds is also made.
Chapter II presents the synthesis, characterization, DNA binding, BSA binding, photo-induced DNA cleavage activity and photocytotoxicity of La(III) and Gd(III) complexes of phenanthroline bases to explore the UV-A light-induced DNA cleavage activity and photocytotoxicity of the complexes.
Chapter III describes the synthesis, characterization, DNA binding, photo-induced DNA cleavage activity and photocytotoxicity of La(III) and Gd(III) complexes of phenanthroline bases with an aim to improve the design of the complexes to achieve better solution stability and DNA binding of the complexes.
Chapter IV presents the synthesis, characterization, DNA binding, and UV-A light-induced DNA photocleavage activity and photocytotoxicity of La(III) and Gd(III) complexes of pyridyl phenanthroline bases with an objective to improve the photoactivity of the complexes by introducing an additional pyridyl group. Cell death mechanism and confocal microscopic studies are also carried out to gain more insight into the PDT effect caused by light in the presence of the complex.
Chapter V describes the synthesis and characterization of La(III) and Gd(III) complexes of terpyridine bases and acetylacetonate to study the complexes as a new class of photosensitizers to explore their DNA photocleavage activity and photocytotoxicity in HeLa cells. Effect of attaching a glucose moiety to the acetyl acetone (Hacac) ligand has been studied. The cellular uptake behaviour of the La(III) pyrenyl-terpyridine complexes has also been investigated.
Finally, Chapter VI presents the synthesis and characterization of curcumin and glycosylated curcumin La(III) and Gd(III) complexes having terpyridine base with an objective to study the photoactivated anticancer activity of the complexes in visible light. This chapter describes the visible light-induced DNA cleavage activity and photocytotoxicity of the complexes by exploiting curcumin and glycosylated curcumin as the photosensitizer ligands. Study on the cellular uptake behavior of curcumin La(III) complexes having pyrenyl terpyridine ligand is also presented.
The references have been assembled at the end of each chapter and indicated as superscript numbers in the text. The complexes presented in this thesis are represented by bold-faced numbers. Crystallographic data of the complexes which are characterized structurally by single crystal X-ray crystallography are provided in CIF format in the enclosed CD (Appendix-I). Due acknowledgements have been made wherever the work described is based on the findings of other investigators. Any unintentional omission that might have happened due to oversight or mistake is sincerely regretted.
|
28 |
Synthesis, Photochemical Properties and DNA Binding Studies of DNA Cleaving Agents Based on Chiral Dipyridine Dihydrodioxins SaltsShamaev, Alexei E. 13 November 2015 (has links)
No description available.
|
Page generated in 0.0283 seconds