• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 3
  • 3
  • 2
  • Tagged with
  • 40
  • 15
  • 11
  • 10
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Impact des facteurs de restriction sur la réplication du virus de l'hépatite B / Impact of restriction factors on hepatitis B virus replication

Hallez, Camille 25 September 2017 (has links)
Le Virus de l'Hépatite B (VHB) infecte 350 millions d'individus à l'échelle mondiale. Il est responsable d'hépatites aigües pouvant évoluer vers la chronicité puis le carcinome hépatocellulaire. Le génome du VHB est constitué d'un ADN partiellement bicaténaire. De par sa nature, il pourrait être sensible à l'action de certaines nucléases cellulaires qui hydrolysent l'ADN double brin. Nous avons ainsi mis en évidence la capacité de la Désoxyribonuclase I (DNase I) à être incorporée dans les virions du VHB, ce qui permet la dégradation du génome viral et la diminution de son infectivité. La DNAse I est particulièrement surexprimée en hypoxie et pourrait contribuer à l'élimination du virus chez les individus cirrhotiques. Par ailleurs, nous avons montré que la cytidine désaminase APOBEC3DE appartenant à une famille de facteurs de restriction viraux possède un rôle proviral. En effet, son association avec APOBEC3F et APOBEC3G mène à une diminution de l'activité de ces dernières et ceci favorise la réplication du VHB. La formation d'hétérodimères APOBEC3DE/APOBEC3F et APOBEC3DE/APOBEC3G semble génèrer un encombrement stérique ne permettant pas l'encaspidation d'APOBEC3F et APOBEC3G, raison pour laquelle le génome du VHB est moins muté lorsqu'APOBEC3DE est exprimée. / Hepatitis B Virus (HBV) infects 350 millions people worldwilde. It triggers accute hepatitis that can turn into cirrhosis then hepatocellular carcinoma. HBV genome is composed of a partially double-stranded DNA.Thus, it could be targeted by some cellular nucleases that hydrolyze double-stranded DNA. We have highlighted that Deoxyribunuclease I (DNase I) can be incorporated into HBV virions and degrade its genome, leading to a loss of viral infectivity. Moreover, DNase I is upregulated under hypoxia which is a caracteristic of liver cirrhosis. DNase I could be involved in HBV elimination in cirrhotic patients. In an other study, we found that APOBECDE, a cytidine deaminase of the same family than some restriction factors, has a proviral activity. Indeed, association of APOBEC3DE with APOBEC3F or APOBEC3G leads to a loss of cytidine deaminase activity and a better viral replication. When APOBEC3DE is associated with those two proteins, APOBEC3F and APOBEC3G cannot be incorporated into HBV virions. This is the reason why HBV is more infectious when APOBEC3DE is expressed.
32

Purification and Characterization of Novel Nucleases from a Thermophilic Fungus

Landry, Kyle S 01 January 2012 (has links) (PDF)
A thermophilic fungus was isolated from composted horse manure. The organism was as a Chaetomium sp. by sequencing the highly conserved ITS region of the fungus and comparing to known regions in a genomic database and was referred to as TM-417. TM-417 was found to have an optimal growth temperature of 45 oC and an optimal pH of 7.0. An extracellular DNase and RNase was found to be produced by the isolate and were purified 145.58-fold and 127.6-fold respectively using a combination of size exclusion chromatography and a novel affinity membrane purification system. The extent of purification was determined electrophoretically using 4-15% gradient polyacrylamide gels. Both DNase and RNase were dependent on metal co-factors for activity. The metal ion Mg2+ was the preferred ion for the DNase, whereas for the RNase, Zn2+ and Mn2+ yielded an increase in enzyme activity over that with Mg2+. The purified DNase demonstrated maximum activity at pH 6.0 with no activity at pH 2.0 or 10.0. The RNase exhibited two peaks of maximum activity, on at pH 3.0 and the other at pH 7.0 with no activity at pH 2.0 or 10.0. The optimal temperature for the purified DNase was 65oC. The optimal temperature for the RNase was 70oC. The molecular of the DNase and RNase were determined to be 56 kDa and 69kDa respectively using a Sephadex G-75 column. A standard curve was generated using several standard proteins of known molecular weight.
33

Footprint Analysis of the Transcriptional Control of Glycogen Phosphorylase 2 in Dictyostelium Discoideum

Col, Bekir 07 January 1998 (has links)
Glycogen phosphorylase 2 (gp-2) is a key enzyme during the development of Dictyostelium discoideum. The gp-2 enzyme breaks down glycogen into glucose monomers that are subsequently used to synthesize the terminal end products of cellular differentiation. This gene is an ideal candidate for studying the process of selective gene expression because its product figures so prominently in the development of this organism, implying a dependable control mechanism responsible for its developmentally regulated expression. I present in this thesis the identification of several putative cis-acting elements of gp-2 as revealed through footprint analysis. Due to the extreme AT-bias characteristic of Dictyostelium promoters, footprinting conditions required intensive optimization with respect to template, nonspecific competitor, source of protein extract and DNase I digestion. Using an endlabeled fragment containing seven repeated sequences (3 TA boxes [TAATTATA], 2 TAG boxes [TAAAAATGGT] and 2 C boxes [ACCCACT]), purified replication protein A and several developmental nuclear extracts were tested for DNA binding activity. Small footprints were observed on the TAG and C boxes of the promoter for both protein sources. However, using a more sensitive footprinting strategy involving multiple rounds of primer extension, larger footprints spanning the same promoter regions were detected. In both cases, the appearance of the footprints coincided with the documented transcriptional activity of the gene. It can be concluded from the data obtained that the TAG and C boxes are very likely cis-acting elements involved in the regulation of gp-2 expression. / Master of Science
34

Chemically Modified Oligonucleotides: Synthesis, Physicochemical and Biochemical Properties of their Duplexes with DNA and RNA

Pradeepkumar, Pushpangadan Indira January 2004 (has links)
<p>This thesis is based on 9 papers dealing with the synthesis, physicochemical and biochemical properties of two types of chemically modified oligonucleotides which have the potential to down-regulate gene expression: (i) The first set is comprised of antisense oligonucleotides (AONs) conjugated with different chromophores of varying size, charge and π-electron density. Conjugation of the chromophores at the 3'- or 5'-end enhanced the target RNA binding affinity and RNase H recruitment capabilities compared to the native counterpart without changing the global helical conformation of their AON/RNA hybrid duplexes. The 3'-dipyridophenazine (DPPZ) has emerged as the most promising non-toxic chromophore in this series. (ii) The second set encompasses a new class of AONs containing <i>North</i>-<i>East</i> conformationally constrained 1',2'-oxetane-nucleosides. The introduction of oxetane-<b>T</b> and -<b>C</b> units imparts lowering of the T<sub>m</sub> by ~ 6º and ~ 3 ºC/modification, respectively, of the AON/RNA hybrids, whereas the incorporation of the corresponding oxetane-<b>A</b> and-<b>G</b> units into AONs did not alter the thermostability in comparison with that of the native hybrid duplex. The oxetane-modified AONs have been found to possess enhanced serum stability compared to that of the native, whereas oxetane-<b>T</b> and -<b>C</b> containing AONs were more endonuclease-resistant than oxetane-<b>A</b> and-<b>G</b> modified AONs. All oxetane-modified mixmer AON/ RNA hybrid duplexes were, however, found to be excellent substrates for RNase H cleavage, which has been analyzed by Michaelis-Menten kinetics. The oxetane-modified mixmer AONs have shown effective down-regulation of the proto-oncogene c-myb mRNA in the K562 human leukemia cells, which was analyzed by QRT-PCR and Western Blot. Based on the amount of AON uptake after delivery, determined by slot blot, it was apparent that the oxetane-modified AONs are 5-6 times more effective antisense agents than the corresponding isosequential phosphorothioate analogues. The electrochemical assay based on sensitive nucleic acid mediated charge transport (CT) has revealed that the presence of oxetane-<b>T</b> unit causes more stacking perturbations in a DNA/DNA duplex than in a DNA/RNA duplex. </p>
35

Chemically Modified Oligonucleotides: Synthesis, Physicochemical and Biochemical Properties of their Duplexes with DNA and RNA

Pradeepkumar, Pushpangadan Indira January 2004 (has links)
This thesis is based on 9 papers dealing with the synthesis, physicochemical and biochemical properties of two types of chemically modified oligonucleotides which have the potential to down-regulate gene expression: (i) The first set is comprised of antisense oligonucleotides (AONs) conjugated with different chromophores of varying size, charge and π-electron density. Conjugation of the chromophores at the 3'- or 5'-end enhanced the target RNA binding affinity and RNase H recruitment capabilities compared to the native counterpart without changing the global helical conformation of their AON/RNA hybrid duplexes. The 3'-dipyridophenazine (DPPZ) has emerged as the most promising non-toxic chromophore in this series. (ii) The second set encompasses a new class of AONs containing North-East conformationally constrained 1',2'-oxetane-nucleosides. The introduction of oxetane-<b>T</b> and -<b>C</b> units imparts lowering of the Tm by ~ 6º and ~ 3 ºC/modification, respectively, of the AON/RNA hybrids, whereas the incorporation of the corresponding oxetane-<b>A</b> and-<b>G</b> units into AONs did not alter the thermostability in comparison with that of the native hybrid duplex. The oxetane-modified AONs have been found to possess enhanced serum stability compared to that of the native, whereas oxetane-<b>T</b> and -<b>C</b> containing AONs were more endonuclease-resistant than oxetane-<b>A</b> and-<b>G</b> modified AONs. All oxetane-modified mixmer AON/ RNA hybrid duplexes were, however, found to be excellent substrates for RNase H cleavage, which has been analyzed by Michaelis-Menten kinetics. The oxetane-modified mixmer AONs have shown effective down-regulation of the proto-oncogene c-myb mRNA in the K562 human leukemia cells, which was analyzed by QRT-PCR and Western Blot. Based on the amount of AON uptake after delivery, determined by slot blot, it was apparent that the oxetane-modified AONs are 5-6 times more effective antisense agents than the corresponding isosequential phosphorothioate analogues. The electrochemical assay based on sensitive nucleic acid mediated charge transport (CT) has revealed that the presence of oxetane-<b>T</b> unit causes more stacking perturbations in a DNA/DNA duplex than in a DNA/RNA duplex.
36

Defining a Registry of Candidate Regulatory Elements to Interpret Disease Associated Genetic Variation

Moore, Jill E. 10 October 2017 (has links)
Over the last decade there has been a great effort to annotate noncoding regions of the genome, particularly those that regulate gene expression. These regulatory elements contain binding sites for transcription factors (TF), which interact with one another and transcriptional machinery to initiate, enhance, or repress gene expression. The Encyclopedia of DNA Elements (ENCODE) consortium has generated thousands of epigenomic datasets, such as DNase-seq and ChIP-seq experiments, with the goal of defining such regions. By integrating these assays, we developed the Registry of candidate Regulatory Elements (cREs), a collection of putative regulatory regions across human and mouse. In total, we identified over 1.3M human and 400k mouse cREs each annotated with cell-type specific signatures (e.g. promoter-like, enhancer-like) in over 400 human and 100 mouse biosamples. We then demonstrated the biological utility of these regions by analyzing cell type enrichments for genetic variants reported by genome wide association studies (GWAS). To search and visualize these cREs, we developed the online database SCREEN (search candidate regulatory elements by ENCODE). After defining cREs, we next sought to determine their potential gene targets. To compare target gene prediction methods, we developed a comprehensive benchmark of enhancer-gene links by curating ChIA-PET, Hi-C and eQTL datasets. We then used this benchmark to evaluate unsupervised linking approaches such as the correlation of epigenomic signal. We determined that these methods have low overall performance and do not outperform simply selecting the closest gene. We then developed a supervised Random Forest model which had notably better performance than unsupervised methods. We demonstrated that this model can be applied across cell types and can be used to predict target genes for GWAS associated variants. Finally, we used the registry of cREs to annotate variants associated with psychiatric disorders. We found that these "psych SNPs" are enriched in cREs active in brain tissue and likely target genes involved in neural development pathways. We also demonstrated that psych SNPs overlap binding sites for TFs involved in neural and immune pathways. Finally, by identifying psych SNPs with allele imbalance in chromatin accessibility, we highlighted specific cases of psych SNPs altering TF binding motifs resulting in the disruption of TF binding. Overall, we demonstrated our collection of putative regulatory regions, the Registry of cREs, can be used to understand the potential biological function of noncoding variation and develop hypotheses for future testing.
37

Familial Chilblain Lupus – A Monogenic Form of Cutaneous Lupus Erythematosus due to a Heterozygous Mutation in TREX1

Günther, Claudia, Meurer, Michael, Stein, Annette, Viehweg, Antje, Lee-Kirsch, Min-Ae January 2009 (has links)
Chilblain lupus erythematosus is a rare form of cutaneous lupus erythematosus characterized by bluish red infiltrates in acral locations of the body mostly affecting middle-aged women. We recently described a familial form of chilblain lupus manifesting in early childhood caused by a heterozygous mutation in the TREX1 gene, which encodes a 3′-5′ DNA exonuclease. Thus, familial chilblain lupus represents the first monogenic form of cutaneous lupus erythematosus. Here we describe the unusual clinical course of this newly defined genodermatosis in an 18-year-old female member of the family in which familial chilblain lupus was originally described. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
38

ANALYSIS OF CHROMATIN ACCESSIBILITY OF THE HUMAN C-MYC REPLICATION ORIGIN

Danh, Tu Thien January 2015 (has links)
No description available.
39

Characterisation of chromatin extracellular traps in rainbow trout (Oncorhynchus mykiss)

Van, Andre P. January 2018 (has links)
One of the greatest challenges in finfish aquaculture is combating losses caused by infectious bacterial diseases, and a better understanding of the interactions between the host immune system and pathogens is essential for developing new methods to manage infections and outbreaks. Extracellular traps (ETs) are decondensed nuclear chromatin released by neutrophils into the extracellular matrix that can ensnare and kill microbes. Since the discovery of ETs in humans, these innate immune effectors have been characterised across the animal kingdom, including in some fish species, though their existence the salmonids has yet to be confirmed. Therefore, the aim of this thesis was to confirm and characterise the release of ETs in the rainbow trout (Oncorhynchus mykiss) and investigate the interaction of these structures with fish pathogenic bacteria. To do this, a triple-layer Percoll gradient technique was employed to give highly enriched cell suspensions of polymorphonuclear cells (PMNs) derived from head-kidney tissue preparations. Treatment of PMN-enriched cell suspensions with the nucleic-acid-specific stain, SYTOX Green, revealed the presence of ET-like structures that had been released without stimulation. These ET-like structures were confirmed by immunostaining techniques to contain the diagnostic proteinaceous markers of ETs: neutrophil elastase, myeloperoxidase and the H2A histone. Previously characterised inhibitors and inducers of ET release from phagocytic immune cells in other animals confirmed that calcium ionophore (CaI), flagellin, and cytochalasin D shared similar activities for ET-release by rainbow trout PMNs. However, interestingly, as the common ET-inducer phorbol-myristate acetate (PMA) and ET-inhibitor diphenyleneiodonium (DPI) did not exert their expected potency in ET release assays with the PMNs, perhaps indicating that these fish cells are less dependent on NADPH oxidase signalling for ET release compared to mammals and most invertebrate species. The PMN-derived ETs were demonstrated to bind to and trap the extracellular nuclease-deficient bacterial fish pathogen, Vibrio anguillarum (Vib 87) when co-cultured. Finally, extracellular nuclease activity produced by a V. anguillarum isolate (Vib 6) during culture was able to degrade ETs released by rainbow trout PMNs in a dose-dependent manner. Moreover, viable colony counts, fluorescent and phase contrast microscopy demonstrated that V. anguillarum Vib 6 eluded trapping by ETs, while an extracellular nuclease-deficient isolate did not. These observations are consistent with the suggestion that nucleases are a microbial virulence factor during host infection. Confirming the existence and antimicrobial potential of extracellular traps released by rainbow trout PMNs may provide a platform towards the development of novel therapeutics to reduce mortalities in finfish aquaculture caused by infectious microbial pathogens.
40

Insights into the Host Cell Entry of Ehrlichia chaffeensis: Roles of the Bacterial Outer Membrane Protein EtpE

Mohan Kumar, Dipu 15 September 2014 (has links)
No description available.

Page generated in 0.0321 seconds