• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • 1
  • Tagged with
  • 15
  • 9
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Chromatin Unfolding by Cdt1 Regulates MCM Loading via Opposing Functions of HBO1 and HDAC11-Geminin

Wong, Philip G. 15 November 2010 (has links)
The efficiency of metazoan origins of DNA replication is known to be enhanced by histone acetylation near origins. Although this correlates with increased MCM recruitment, the mechanism by which such acetylation regulates MCM loading is unknown. We show here that Cdt1 induces large-scale chromatin decondensation that is required for MCM recruitment. This process occurs in G1, is suppressed by Geminin, and requires HBO1 HAT activity and histone H4 modifications. HDAC11, which binds Cdt1 and replication origins during S-phase, potently inhibits Cdt1-induced chromatin unfolding and re-replication, suppresses MCM loading, and binds Cdt1 more efficiently in the presence of Geminin. We also demonstrate that chromatin at endogenous origins is more accessible in G1 relative to S-phase. These results provide evidence that histone acetylation promotes MCM loading via enhanced chromatin accessibility. This process is regulated positively by Cdt1 and HBO1 in G1 and repressed by Geminin-HDAC11 association with Cdt1 in S-phase, and represents a novel form of replication licensing control.
2

Ποιοτικός και ποσοτικός προσδιορισμός των επιπέδων έκφρασης των ρυθμιστών του κυτταρικού κύκλου Cdt1 και Geminin σε ανθρώπινους καρκινικούς ιστούς

Συμεωνίδου, Ιωάννα Ελένη 26 October 2009 (has links)
Η αδειοδότηση της αντιγραφής διασφαλίζει την ακεραιότητα της γενετικής πληροφορίας κατά τη μεταβίβασή της στα θυγατρικά κύτταρα και εξασφαλίζει ότι το DNA αντιγράφεται μία μόνο φορά κατά τη διάρκεια του ίδιου κυτταρικού κύκλου. Η πρωτεΐνη Cdt1 αποτελεί σημαντικό παράγοντα αδειοδότησης και συσσωρεύεται κατά τη G1 φάση του κυτταρικού κύκλου. Φυσικός αναστολέας της Cdt1 είναι η Geminin, που εκφράζεται καθ’όλες τις φάσεις του κυτταρικού κύκλου, εκτός από τη G1. Η διατήρηση της ισορροπίας της έκφρασης των πρωτεϊνών Cdt1 και Geminin είναι σημαντική για τη διασφάλιση της γενετικής ακεραιότητας. Αποσιώπηση της Geminin ή υπερέκφραση της Cdt1 μπορεί να οδηγήσει σε εκτοπική επανέναρξη της αντιγραφής. Σε ποντίκια, η υπερέκφραση της Cdt1 συμβάλλει στην εμφάνιση κακοήθειας, γεγονός που αποδεικνύει το ρόλο της πρωτεΐνης ως ογκογονίδιο. Πρόσφατες μελέτες υποδεικνύουν ότι μόρια που συμμετέχουν στο μηχανισμό αδειοδότησης της αντιγραφής μπορούν να χρησιμεύσουν ως προγνωστικοί-διαγνωστικοί δείκτες. Υψηλά επίπεδα έκφρασης των MCMs και της Geminin έχουν παρατηρηθεί σε διάφορες κακοήθειες και έχουν συσχετιστεί με κλινικοπαθολογικές παραμέτρους της ασθένειας. Αν και έχει δειχθεί ότι η Cdt1 διαθέτει ογκογόνο δράση, ελάχιστα δεδομένα είναι διαθέσιμα, μέχρι στιγμής, αναφορικά με τα επίπεδα έκφρασής της σε κακοήθεις καταστάσεις και με την πιθανή χρήση της ως βιολογικού δείκτη. Αρχικός στόχος αυτής της εργασίας ήταν η έκφραση ενός τμήματος της Cdt1 πρωτεΐνης για την ανοσοποίηση κουνελιών και την παραγωγή αντισώματος. Συγκεκριμένα πραγματοποιήθηκε έκφραση της υβριδικής GST-C391 hCdt1 πρωτεΐνης σε ετερόλογο βακτηριακό σύστημα έκφρασης. Παράλληλα πραγματοποιήθκε έκφραση ενός ακόμη τμήματος της hCdt1 που έφερε τον επίτοπο His. Η δεύτερη υβριδική πρωτεΐνη (His-ΔΝ Cdt1) χρησιμοποιήθηκε για τον καθαρισμό των αντιορρών των ανοσοποιημένων ζώων και την απομόνωση του αντισώματος. Η ειδικότητα του καθαρισμένου αντισώματος πιστοποιήθηκε με ανοσοφθορισμό και ανοσοαποτύπωση western σε δύο καρκινικές κυτταρικές σειρές, στα HeLa και στα MCF7. Επιπλέον, πειράματα ανοσοϊστοχημειας σε τομές από περιστατικά καρκίνου μαστού επιβεβαίωσαν τη δυνατότητα χρήσης του αντισώματος σε ιστικές τομές παραφίνης. Η εξέταση των πρωτεϊνικών επιπέδων έκφρασης της Cdt1 έδειξε σημαντική υπερέκφραση της πρωτεΐνης στον όγκο σε σχέση με τον παρακείμενο φυσιολογικο ιστό. Επιπλέον, στην παρούσα εργασία προσδιορίστηκαν τα επίπεδα έκφρασης του mRNA των Cdt1 και Geminin, με τη μέθοδο της Real-Time PCR, σε δύο καρκινικές κυτταρικές σειρές (HeLa και MCF7) και σε πρωτογενείς ανθρώπινους ινοβλάστες. Διαπιστώθηκε αύξηση των επιπέδων έκφρασης του mRNA του Cdt1 κατά δύο φορές στις δύο καρκινικές κυτταρικές σειρές, σε σχέση με τους ινοβλάστες. Αντίθετα, η Geminin, εκφράζεται περισσότερο κατά δύο φορές στα HeLa σε σχέση με τα φυσιολογικά κύτταρα, ενώ στα MCF7 τα επίπεδά της είναι υποδιπλάσια σε σχέση με τους ινοβλάστες. Επομένως, ο λόγος των Cdt1/Geminin επηρεάζεται με διαφορετικό τρόπο στις δύο καρκινικές σειρες: στα HeLa φαίνεται ότι διατηρείται σταθερός, σε σχέση με τους ινοβλάστες, ενώ στα MCF7 παρουσιάζεται τετραπλάσιος. / -
3

Δομική και λειτουργική μελέτη του συμπλόκου Geminin/Cdt1 και μελέτη συνθετικών ενώσεων που το τροποποιούν

Καραντζέλης, Νικόλαος 02 March 2015 (has links)
Η απορρύθμιση του συστήματος αδειοδότησης της αντιγραφής εμπλέκεται στη γονιδιωματική αστάθεια, η οποία αποτελεί χαρακτηριστικό γνώρισμα των καρκινικών κυττάρων. Η απορρύθμιση των επιπέδων έκφρασης των Cdt1 και Geminin, είτε λόγω υπερέκφρασης του Cdt1, είτε λόγω αποσιώπησης της Geminin, οδηγεί σε εκτοπική επανέναρξη της αντιγραφής και υπερδιπλασιασμό του DNA, θέτοντας έτσι σε κίνδυνο τη γονιδιωματική ακεραιότητα του κυττάρου. Υπερέκφραση των δύο πρωτεϊνών έχει παρατηρηθεί τόσο σε καρκινικές κυτταρικές σειρές όσο και σε περιπτώσεις καρκίνου στον άνθρωπο. Ιδιαίτερη σημασία έχει επίσης το γεγονός ότι η διαταραχή της ισορροπίας των Cdt1 και Geminin, μέσω της απορρύθμισης της έκφρασής τους, μπορεί να προκαλέσει διαφορετική απόκριση στα καρκινικά κύτταρα έναντι των φυσιολογικών. / Misregulation of the replication licensing system is involved in genomic instability, which is a whole-mark of cancer cells. Particularly, Cdt1 overexpression or silencing of Geminin can lead to DNA over-replication and thus jeopardize the genomic integrity of the cell. Both proteins have been found to be over-expressed in cancer-derived cell lines and human tumor specimens. Notably, cancer and normal cells respond differently to the disturbance of Geminin-Cdt1 balance, caused by misregulation of their expression.
4

Μελέτη χημικής συνθετικής ένωσης η οποία διασπάει το σύμπλοκο Geminin-Cdt1 σε κυτταρικές σειρές

Κανέλλου, Αλεξάνδρα 08 January 2013 (has links)
Η διαδικασία της αδειοδότησης της αντιγραφής του DNA περιλαμβάνει αρχικά το σχηματισμό του προ-αντιγραφικού συμπλόκου στις αφετηρίες της αντιγραφής, με τελικό αποτέλεσμα την προσέλκυση των ελικασών MCM2-7 (Mini Chromosome Maintenance Complex) και την έναρξη της αντιγραφής. Ο παράγοντας Cdt1 διαδραματίζει σημαντικό ρόλο στη διαδικασία αδειοδότησης και για τον λόγο αυτό ρυθμίζεται αυστηρά κατά την διάρκεια του κυτταρικού κύκλου. Στους ανώτερους ευκαρυωτικούς οργανισμούς, εκτός από την αποικοδόμησή του, υπάρχει ένας επιπλέον τρόπος ρύθμισής του, μέσω της πρωτεΐνης της Geminin. Η Geminin προσδένεται στο Cdt1 και με αυτόν τον τρόπο αναστέλλει τη στρατολόγηση των MCM2-7 στη χρωματίνη και επομένως, την αδειοδότηση της αντιγραφής. Εκτός από την δράση της στην ρύθμιση του κυτταρικού κύκλου, η Geminin παίζει σημαντικό ρόλο και στην κυτταρική διαφοροποίηση, αλληλεπιδρώντας με μεταγραφικούς παράγοντες και πρωτεϊνικά σύμπλοκα αναδιοργάνωσης της δομής της χρωματίνης. Η γονιδιωματική αστάθεια είναι χαρακτηριστικό των καρκινικών κυττάρων, στην οποία συντελεί απορύθμισης παραγόντων του συστήματος αδειοδότησης της αντιγραφής και συγκεκριμένα των κύριων ρυθμιστών του, Geminin και Cdt1. Η υπερέκφραση του Cdt1 οδηγεί σε επαναντιγραφή και, συνεπώς, υπερδιπλασιασμό του DNA, ενώ την ίδια επίπτωση εμφανίζει και η αποσιώπηση της Geminin. Η σημαντικότητα της αλληλεπίδρασης των δυο αυτών μορίων οδήγησε στην αναζήτηση συνθετικών χημικών ουσιών με την ικανότητα διάσπασης του συμπλόκου Geminin-Cdt1. Οι συνθετικές αυτές χημικές ενώσεις μπορούν να χρησιμοποιηθούν ως μοριακά εργαλεία για την περαιτέρω μελέτη της in vivo αλληλεπίδρασης των Geminin και Cdt1 στις διαδικασίες του κυτταρικού πολλαπλασιασμού και διαφοροποίησης, καθώς επίσης και ως φαρμακολογικές ουσίες με πιθανή αντικαρκινική δράση. Η παρούσα εργασία εστιάστηκε στη μελέτη της συνθετικής χημικής ένωσης XIV, η οποία είχε ταυτοποιηθεί σε έναν προηγούμενο μαζικό έλεγχο υψηλής απόδοσης (High throughput Screening - HTS). Αρχικά καθορίστηκαν τα επίπεδα κυτταροτοξικότητάς της. Στη συνέχεια μελετήθηκε η ικανότητά της να μεταβάλλει την ενδοκυτταρική κατανομή της Geminin και τέλος, εξετάστηκε η επίδρασή της στον κυτταρικό κύκλο. Τα αποτελέσματα έδειξαν ότι η συνθετική χημική ένωση XIV παρουσιάζει περιορισμένη κυτταροτοξικότητα. Επιπλέον, αυξάνει τον πυρηνικό εντοπισμό της εξωγενώς εκφρασμένης Geminin, υποδεικνύοντας ότι μπορεί να ανταγωνίζεται το Cdt1 για την πρόσδεσή του στη Geminin. Πειράματα ανοσοφθορισμού και ανάλυσης περιεχομένου του DNA, μέσω FACS, έδειξαν ότι η συνθετική χημική ένωση XIV προκαλεί αναστολή του κυτταρικού κύκλου των καρκινικών κυττάρων κατά τα αρχικά στάδια της S φάσης. Συμπερασματικά, η συνθετική χημική ένωση XIV ενδέχεται να επηρεάζει την αλληλεπίδραση των Geminin και Cdt1. Χημικές ενώσεις ικανές να παρεμβαίνουν στην ειδικότητα αλληλεπίδρασης των δυο αυτών μορίων και συνεπώς στο σύστημα αδειοδότησης της αντιγραφής, μπορούν να αποτελέσουν τη βάση για την ανάπτυξη μια νέας γενιάς αντικαρκινικών φαρμάκων με βελτιστοποιημένες ιδιότητες. / The replication licensing begins with the formation of the pre-Replicative Complex (preRC) on the origins of replication (ori), leading to the recruitment of the MCM2-7 helicases onto chromatin and the initiation of DNA replication. Cdt1 plays a crucial role in the licensing and is therefore strictly regulated during the cell cycle. Cdt1 is primarily regulated via proteolytic degradation, while in higher eukaryotes, is also negatively regulated by Geminin. Geminin’s binding to Cdt1 inhibits the loading of the MCMs to chromatin and thus licensing of DNA replication. Geminin also has an additional role in differentiation processes by multiple interactions with transcriptional factors and chromatin remodeling complexes. Cancer cells are characterized by genomic instability. Deregulation of the components of the licensing system and especially of Geminin and Cdt1, leads to genomic instability and promotes malignant transformation. Geminin and Cdt1 complex could be used as could serve as target for the identification of chemical compounds that would be able to modulate proliferation. These chemical compounds can be used as molecular tools for further studying the in vivo interaction of these two molecules during the processes of cellular proliferation and differentiation, and ultimately serve as potential pharmacological agents with anti-cancer properties. In this study, we aimed to characterize the chemical compound XIV, which was identified in a previous High Throughput Screening (HTS). Specifically, we examined compound XIV in cellular assays in order to determine cytotoxity, its ability to alter the subcellular localization of Geminin and cell cycle profile of cancer cells. Our results, suggest that the chemical compound XIV exhibits limited cytotoxicity. It increases the nuclear localization of transiently expressed Geminin, suggesting that it might act by antagonizing Cdt1 for the binding of Geminin. Additionally, immunofluorescence and FACS experiments showed that chemical compound XIV causes cell cycle arrest during early S phase. Overall, in this study we propose that chemical compound XIV interferes with the Geminin and Cdt1 complex and affects proliferation of tumorigenic cells.
5

Εφαρμογή τεχνικών λειτουργικής μικροσκοπίας και ανάλυσης εικόνας στη μελέτη του παράγοντα αδειοδότησης της αντιγραφής Cdt1 μετά από βλάβη στο γενετικό υλικό

Γιακουμάκης, Νικόλαος-Νικηφόρος 07 June 2013 (has links)
Η αδειοδότηση εξασφαλίζει τη χωροχρονική ρύθμιση της αντιγραφής του γενετικού υλικού. Στα ευκαρυωτικά κύτταρα, η πρωτεΐνη Cdt1 καθορίζει πότε θα λάβει χώρα η αδειοδότηση και η έκφρασή της είναι αυστηρώς ρυθμισμένη, διαμέσου πολλαπλών μονοπατιών. Διατάραξη της ισορροπίας της ρύθμισης της αντιγραφής οδηγεί σε γονιδιωματική αστάθεια, ανεξέλεγκτο πολλαπλασιασμό ή σε κυτταρικό θάνατο. Γονιδιωματική αστάθεια σε ένα οργανισμό επίσης προκαλείται από βλάβες στο γενετικό υλικό, είτε εξαιτίας περιβαλλοντικών παραγόντων, είτε εξαιτίας τυχαίων αλλαγών που συμβαίνουν κατά τη διάρκεια του μεταβολισμού του. Για την αντιμετώπιση των βλαβών έχουν εξελικτικά προκύψει επιδιορθωτικοί μηχανισμοί εξειδικευμένοι στην αντιμετώπιση κάθε τύπου βλάβης. Ο παράγοντας Cdt1 φαίνεται να διασυνδέει τα μονοπάτια της αδειοδότησης της αντιγραφής με αυτά της απόκρισης σε βλάβη στο DNA, γεγονός που τον καθιστά ενδιαφέροντα για περαιτέρω μελέτη. Στο πρώτο μέρος της μελέτης θα γίνει χαρακτηρισμός μια μεθόδου που προκαλεί ολική ή εντοπισμένη βλάβη στο γενετικό υλικό κυττάρων με χρήση υπεριώδους ακτινοβολίας. Με τη τεχνική αυτή θα μελετηθεί σε καρκινικές σειρές η πρωτεΐνη Cdt1 και η ταχύτητα πρωτεόλυσής της.Σε μικροσκόπιο φθορισμού θα μελετηθεί ο εντοπισμός και σε συνεστιακό μικροσκόπιο η κινητική της πρωτεΐνης αυτής, καθώς και η μεταλλαγμένη μορφή Cdt1 (Cdt1+4A), η οποία δεν αλληλεπιδρά με το πρωτεολυτικό μηχανισμό Cul4-DDB1Cdt2,. Η μελέτη της κινητικής γίνεται σε ζωντανά κύτταρα καρκινικών σειρών με σκοπό την κατανόηση της ιεράρχησης των γεγονότων που συμβαίνουν σε περιοχές στοχευμένης βλάβης από υπεριώδη ακτινοβολία στο γενετικό υλικό. Με την τεχνική επαναφοράς φθορισμού μετά από φωτολεύκανση (Fluoresent Recovery After Photobleaching) θα παρακολουθηθεί η επαναφορά του σήματος με σκοπό την ποσοτικοποίηση της δεσμευμένης πρωτεΐνης. Στο δεύτερο μέρος της μελέτης θα αναπτυχθούν μέθοδοι κανονικοποίησης και ανάλυσης 6 πειραματικών δεδομένων λειτουργικής μικροσκοπίας με εργαλεία το οποία αναπτύχθηκαν ειδικά για την ανάλυση πειραμάτων FRAP (easyFRAP). Επίσης αναλύεται η δημιουργία κατάλληλου λογισμικού και η βελτιστοποίηση τεχνικών παρατήρησης της επαναφοράς του φθορισμού μετά από μεγάλα χρονικά διαστήματα, της τάξεως των ωρών έναντι της κλασικής μεθόδου όπου η παρατήρηση διαρκεί κάποια δευτερόλεπτα. Τέλος ακολουθεί σύγκριση της εφαρμογής easyFRAP με την εφαρμογή FRAPcalc, η οποία χρησιμοποιείται επίσης για την κανονικοποίηση και οπτικοποίηση δεδομένων FRAP. / The process of licensing of DNA replication ensures that the cell cycle proceeds to timely regulated replication. In metazoa, Cdt1 is the factor that ensures the regulation of licensing. Cdt1 is tightly regulated through various biological pathways and it is functionally conserved through evolution. If the regulation of Cdt1 is disturbed, genomic instability, uncontrolled replication and apoptosis may occur. Genomic instability may also occur in an organism after DNA damage, either due to environmental factors, or due to random mutations. Evolution has provided cells with various DNA damage response mechanisms for all kinds of damages. The cell cycle regulatory protein Cdt1 has been postulated to link the cell cycle and the DNA damage responses, therefore Cdt1 is a very interesting protein for further studying. At the first part of our study we introduced a method for total or localized DNA damage in live cells with the use of ultraviolet radiation. With this technique we showed that on different cancer cell lines the protein Cdt1, accumulate fast in the sites of damage. With a fluorescent microscope we studied the localization and with a confocal microscope we investigated the kinetics of wild type Cdt1 linked with a green fluorescent protein tag, along with the study of a Cdt1 mutant (Cdt1+4A) again linked with a green fluorescent protein tag. Cdt1+4A has lost the ability to associate with the proteolytic mechanism of Cul4-Ddb1Cdt2. In live cells, in order to investigate the spatiotemporal regulation of DNA damage response we used Fluorescent Recovery after Photobleaching (FRAP) technique and we studied the protein kinetics and we quantified the percentage of the bound protein on the chromatin. At the second part of our study, we present the normalization method we used for our raw experimental data. For the purpose of this analysis, tools and softwares were developed for accurate normalization. We also aimed to optimize a technique for the observation of fluorescent recovery after photobleaching during long periods of time, in contrast with the typical short FRAP experiments. Finally, we describe a brief comparison between the FRAP analysis tool we developed(easyFRAP) and another software commercially available (FRAPcalc) for that purpose.
6

Caractérisation fonctionnelle des protéines CDT1 d'Arabidopsis : rôles dans la régulation de la prolifération cellulaire et dans le maintien de l'intégrité du génome / Functional characterization of Arabidopsis CDT1 proteins : role in cell proliferation regulation and maintenance of genome integrity

Domenichini, Séverine 25 March 2014 (has links)
Chez les plantes, les méristèmes ont la capacité de se diviser tout au long de la vie de la plante, qui peut dépasser 1000 ans pour certaines espèces. De plus, la lignée germinale n'est pas définie dès l'embryogenèse mais provient des cellules méristématiques et s’individualise relativement tard au cours du développement. Il est donc crucial que le cycle cellulaire soit finement régulé afin d'éviter une accumulation de mutations au cours de la croissance végétative et de la reproduction. Chez tous les eucaryotes, les protéines CDT1 sont impliquées dans l’initiation de la réplication de l'ADN en permettant la formation du complexe de pré-réplication et l'ouverture de la fourche de réplication avant le recrutement des ADN polymérases. Leur activité est strictement régulée afin que chaque partie du génome soit répliquée une fois et une seule au cours de la phase S. Le génome d’Arabidopsis thaliana code pour deux protéines homologues du facteur d’initiation de la réplication CDT1 (CDC10 Target1) : AtCDT1a et AtCDT1b. La sur-expression de CDT1a stimule la réplication de l’ADN et, chez Arabidopsis, cette protéine aurait une double fonction dans la régulation du cycle cellulaire et dans la division des plastes. Nous avons étudié ici les fonctions respectives de AtCDT1a et AtCDT1b. En utilisant des approches génétiques, nous avons montré que ces deux protéines jouent des rôles partiellement redondants pour maintenir l’intégrité du génome et permettre le développement des gamétophytes. De plus, en réalisant une approche de TAP (Tandem Affinity Purification), nous avons montré qu’elles interagissent avec l’ADN polymérase ε, une ADN polymérase réplicative, ouvrant de nouvelles perspectives de recherche concernant le rôle des protéines CDT1de plantes lors de la réplication de l'ADN. En parallèle, nous avons essayé d'élucider les spécificités de CDT1a et plus précisément de son extension N-terminale qui est absente de CDT1b. Nous avons constaté que ce domaine de CDT1a est requis pour son interaction avec l'ADN pol ε, et que les mutants cdt1a complémentés par une version tronquée de la protéine présentent une croissance considérablement réduite, un arrêt prématuré du méristème racinaire, et un stress de l'ADN constitutif, ce qui suggère que l’interaction CDT1a/pol ε est indispensable à la progression normale de la phase S. L’ensemble de nos résultats ont révélé de nouvelles fonctions pour les homologues de CDT1 de plantes. Une question importante sera de déterminer si celles-ci sont caractéristiques du cycle cellulaire chez les plantes, ou si nous avons identifié de nouveaux mécanismes qui sont conservés chez tous les eucaryotes. / In plants, meristems retain the ability to divide throughout the life cycle of plants, which can last for over 1000 years in some species. Furthermore, the germline is not laid down early during embryogenesis but originates from the meristematic cells relatively late during development. Thus, accurate cell cycle regulation is of utmost importance to avoid the accumulation of mutations during vegetative growth and reproduction. In all eukaryotes, CDT1 proteins are involved in the onset of DNA replication by allowing the formation of the pre-replication complex and subsequent opening of the replication fork. Their activity is strictly regulated to ensure faithful duplication of the genome during S-phase. The Arabidopsis thaliana genome encodes two homologs of the replication licensing factor CDT1 (CDC10 Target 1): AtCDT1a and AtCDT1b. Overexpression of CDT1a stimulates DNA replication, and this protein would have a function both in cell cycle regulation and plastid division.Here, we have investigated the respective roles of Arabidopsis CDT1a and CDT1b. Using genetic approaches, we have shown that the two proteins function partially redundantly to maintain genome integrity and allow gametophyte development. In addition, using Tandem Affinity Purification, we have shown that they interact with DNA pol ε, a replicative DNA polymerase, opening further research prospects regarding the role of plant CDT1 proteins during DNA replication. In parallel, we have tried to elucidate the specificities of CDT1a and more precisely of its N-terminal extension that is absent from CDT1b. We have found that this domain of CDT1a is required for its interaction with DNA pol ε, and that cdt1a mutants complemented with a truncated version of the protein show drastically reduced growth, premature meristem arrest, and constitutive DNA stress, suggesting that the CDT1a/pol ε interaction is indispensible to the normal progression of S-phase. Together, our results have unraveled new functions for plant CDT1 homologues, and one important aspect of future research will be to determine whether these are features of the plant cell cycle, or if we have identified new mechanisms that are conserved in all eukaryotes.
7

Έκφραση και καθορισμός του συμπλόκου Cdt1 και Geminin σε βακτηριακά κύτταρα

Καραντζέλης, Νικόλαος 22 December 2008 (has links)
Η ακρίβεια και η πιστότητα της διαδικασίας διπλασιασμού του γονιδιώματος είναι μείζωνος σημασίας για την κυτταρική επιβίωση. Τυχόν ανωμαλίες όπως μεταλλάξεις ή χρωμοσωμικές ανωμαλίες είναι δυνατόν να οδηγήσουν στην εμφάνιση κακοήθειας ή σε πρόωρο κυτταρικό θάνατο. Τα παραπάνω συνηγορούν στη μεγάλη σημασία που έχει η άρτια λειτουργία και ρύθμιση του κυτταρικού κύκλου. Δύο πρωτεϊνες, οι geminin και cdt1, κατέχουν πολύ σημαντικό ρόλο κατά τη διαδικασία ρύθμισης του κυτταρικού κύκλου. Πιο συγκεκριμένα, η cdt1 αποτελεί έναν βασικό παράγοντα αδειοδότησης της αντιγραφής. Δρα συνεργατικά με την πρωτεϊνη Cdc6 προκειμένου να γίνει η πρόσδεση του εξαμερούς συμπλόκου MCM2-7 στο προ-αντιγραφικό σύμπλοκο (pre-RC), διασφαλίζοντας με τον τρόπο αυτό τις απαραίτητες συνθήκες για τη διαδικασία αδειοδότησης της αντιγραφής (Maiorano D. et al., 2000). Η geminin συνιστά τον φυσικό αναστολέα της cdt1 στα μετάζωα. Προσδένεται ισχυρά στην τελευταία μετά την έναρξη της σύνθεσης του DNA, παρεμποδίζοντας με αυτόν τον τρόπο την επαναπρόσδεσή της στο προ-αντιγραφικό σύμπλοκο (Tada S. et al., 2001; Wohlschlegel J.A. et al., 2000). Η διαδικασία αδειοδότησης της αντιγραφής παρουσιάζει ανωμαλίες σε περιπτώσεις καρκινικών κυττάρων. Πιο συγκεκριμένα, έχει δειχθεί σταθερή υπερέκφραση της cdt1 σε καρκινικές κυτταρικές σειρές, τόσο σε πρωτεϊνικό όσο και σε μεταγραφικό επίπεδο (Xouri G. et al., 2004). Παρομοίως, αυξημένη έκφραση της cdt1 έχει παρατηρηθεί και σε περιπτώσεις καρκίνου του παχέος εντέρου καθώς και πρώιμου καρκίνου του πνεύμονα, στον άνθρωπο (Bravou V. et al., 2005; Karakaidos P. et al., 2004). Τα παραπάνω αποτελέσματα έχουν προκύψει κατόπιν μελέτης, η οποία πραγματοποιήθηκε στο εργαστήριό μας. Αναφορικά με τη geminin, αυξημένα επίπεδα έκφρασής της έχουν συσχετιστεί με καρκινώματα παχέος εντέρου καθώς και με τη διαίρεση κακοηθών κυττάρων, γενικότερα (Gonzalez M.A. et al., 2005; Wohlschlegel J.A. et al., 2002). Επιπροσθέτως, η geminin βρίσκει εφαρμογή ως ανεξάρτητος δείκτης σε περιπτώσεις επιθετικού καρκίνου του μαστού (Gonzalez M.A. et al., 2004). Βασιζόμενοι στα παραπάνω, θεωρούμε ότι το σύμπλοκο geminin-cdt1 συνιστά έναν ιδανικό στόχο για το σχεδιασμό νέων αντικαρκινικών φαρμάκων. Το πρώτο βήμα προς αυτήν την κατεύθυνση αποτελεί ο μαζικός έλεγχος συνθετικών συστατικών, τα οποία να έχουν την ικανότητα διάσπασης του συμπλόκου. Ενδεχόμενη εύρεση τέτοιων συνθετικών συστατικών καθώς και μετέπειτα φυσικοχημική βελτιστοποίησή τους είναι δυνατόν να οδηγήσει στη δημιουργία ενός νέου αντικαρκινικού φαρμάκου. Η ολοκλήρωση της χαρτογράφησης του ανθρώπινου γονιδιώματος συνέβαλε στην ταυτοποίηση νέων πρωτεϊνικών μορίων στόχων, τα οποία εμπλέκονται στο μοριακό μηχανισμό διαφόρων ασθενειών. Με βάση τις εξελίξεις των τελευταίων χρόνων στον τομέα της φαρμακοβιομηχανίας, η αξιοποίηση αυτής της γνώσης συνδέεται με το μαζικό έλεγχο συνθετικών συστατικών έναντι αυτών των μορίων στόχων. Απώτερο στόχο αποτελεί η αναγνώριση κατάλληλων συνθετικών συστατικών τα οποία θα έχουν την ικανότητα να αλληλεπιδρούν με το μόριο-στόχος και κατ’επέκταση να μεταβάλλουν τον τρόπο λειτουργίας του, προκειμένου να έχουμε το επιθυμητό φαρμακολογικό αποτέλεσμα. Αποφασιστικής σημασίας στην παραπάνω διαδικασία, αποτελεί η σωστή επιλογή της κατάλληλης μεθόδου μαζικού ελέγχου των νέων υποψήφιων φαρμάκων – συνθετικών συστατικών – έναντι του μορίου στόχου. Στην παρούσα διπλωματική, επιλέχθηκε προς εφαρμογή η μέθοδος FRET. Ένα από τα βασικά της πλεονεκτήματα είναι η υψηλή αναλογία ‘σήματος-θορύβου’ που εμφανίζει καθώς και η υψηλή ποιότητα των δεδομένων που παρέχει. Αν και αποτελεί μία σχετικά καινούρια τεχνική, εντούτοις αποτελεί μία από τις πιο βασικές μεθόδους της σύγχρονης φαρμακοβιομηχανίας λόγω της αξιοπιστίας που την χαρακτηρίζει και επιπλέον της συμβατότητάς της με αυτοματοποιημένες τεχνικές. Ασφαλώς, απαραίτητη προϋπόθεση για την εφαρμογή της συγκεκριμένης μεθόδου αποτελεί η απομόνωση της υπό μελέτη πρωτεϊνης. Η έκφραση του πρωτεϊνικού συμπλόκου geminin-cdt1 πραγματοποιήθηκε με τη χρήση βακτηριακών συστημάτων έκφρασης ετερόλογων πρωτεϊνών. Επίσης, ο καθαρισμός του συμπλόκου υπήρξε επιτυχής και βασίστηκε στην εφαρμογή των τεχνικών της χρωματογραφίας συγγένειας και της χρωματογραφίας διήθησης σε πηκτή. Το επόμενο βήμα ήταν να διαπιστώσουμε εάν η μέθοδος FRET καθιστά δυνατή την ανίχνευση σχηματισμού του συμπλόκου. Πράγματι, κάτι τέτοιο ήταν εφικτό καθώς σε συγκέντρωση 60-80nM του συμπλόκου, παρατηρήθηκε αύξηση του σήματος σχεδόν κατά πέντε φορές υψηλότερα από το επίπεδο “θορύβου”. Το αποτέλεσμα αυτό είναι ιδιαίτερα σημαντικό καθώς συνεπάγεται ότι με τη συγκεκριμένη μέθοδο είναι εφικτός ο μαζικός έλεγχος συνθετικών συστατικών, τα οποία θα έχουν την ικανότητα διάσπασης του συμπλόκου. Οι λόγοι που συντελούν στην καταλληλότητα της μεθόδου για αυτό το σκοπό έγκεινται αφενός στην ευαισθησία την οποία εμφανίζει (αύξηση του σήματος μέχρι και πέντε φορές) και αφετέρου στην ειδικότητα και την αξιοπιστία της, όπως έχει δειχθεί και με τα αντίστοιχα πειράματα. Σημαντικό επίσης πλεονέκτημα αποτελεί και η μικρή σχετικά ποσότητα πρωτεϊνης (60-80nM), η οποία απαιτείται. Σύμφωνα με τα δεδομένα που έχουν προκύψει από την παρούσα διπλωματική , το FRET assay συνιστά μία ιδανική μέθοδο για την πραγματοποίηση μαζικού ελέγχου συνθετικών συστατικών, τα οποία θα έχουν την ικανότητα διάσπασης του συμπλόκου geminin-cdt1. Δεδομένης της πολύ ισχυρής αλληλεπίδρασης του συγκεκριμένου συμπλόκου, πραγματοποιήθηκαν μεταλλαγές σε τρία υψηλά συντηρημένα κατάλοιπα της cdt1, τα οποία κατέχουν κυρίαρχο ρόλο στην αλληλεπίδραση με τη geminin, σύμφωνα με κρυσταλλογραφικά δεδομένα (Lee C. et al., 2004). Οι μεταλλαγές αυτές ενδέχεται να συμβάλλουν σε ένα πολύ πιο εύκολα διασπάσιμο σύμπλοκο, γεγονός που μπορεί να οδηγήσει στην ευκολότερη και γρηγορότερη ταυτοποίηση υποψήφιων συνθετικών συστατικών. / The accurate and timely duplication of the genome is vital for cell survival. Mutations rearrangements or loss of chromosomes can be detrimental to a single cell as well as to the whole organism, causing malignant cell growth or death. Origins of replication are licensed by a multi-subunit complex (pre-replicative complex: pre-RC) during G1 (Lei M & Tye B.K., 2001). Pre-RC assembly is an ordered, sequential process in which the Origin Recognition Complex (ORC) first binds to each replication origin and then recruits two other proteins: Cdc6 and Cdt1 (Bell S.P. & Dutta A., 2002). These two proteins function synergistically to load the six mini-chromosome maintenance helicase proteins (MCM2-7) onto the pre-RC, establishing the conditions for DNA licensing (Maiorano D. et al., 2000). The prevention of ectopically induced re-replication is accomplished by functionally redundant mechanisms, including sequestration of MCM by Crm1 (Yamaguchi R. & Newport J., 2003), inactivation and export from the nucleus of Cdc6 (Delmolino L.M. et al., 2001; Jiang W. et al., 1999; Pelizon C. et al., 2000) and degradation of Cdt1 (Nishitani H. et al., 2001). Metazoans, have evolved an additional system for preventing re-replication: Geminin, which was originally identified in Xenopus as essential factor to exit from mitosis (McGarry T.J. & Kirschner M.W., 1998), binds tightly to Cdt1 and prevents Cdt1 assembly onto pre-RC (Tada S. et al., 2001; Wohlschlegel J.A. et al., 2000). Licensing system members are misregulated in cancer cells and differential expression of licensing components could be used for the diagnosis and prognosis of cancer (Shreeram S. & Blow J.J., 2003). Over-expression of Cdt1 can predispose cells to a malignant transformation. It has been shown that Cdt1 is consistently over-expressed in cancer cell lines at both the protein and RNA level (Xouri G. et al., 2004). Moreover, Cdt1 protein is highly expressed in cases of human colon cancer and primary human lung carcinomas (Bravou V. et al., 2005; Karakaidos P. et al., 2004). Similarly, Geminin is also over-expressed in colon carcinomas and its expression levels were directly related to the cellular proliferation index in proliferating malignant cells (Gonzalez M.A. et al., 2005; Wohlschlegel J.A. et al., 2002). Furthermore, expression of Geminin is considered as an independent indicator of adverse prognosis in cases of invasive breast cancer (Gonzalez M.A. et al., 2004). Given the crucial role of the Geminin-Cdt1 complex in cell cycle regulation and cancer, this complex could serve as target for the discovery and development of novel anti-cancer drugs. This requires the screening of compounds that are capable of disrupting the geminin-cdt1 complex. For that purpose we performed a HTP (high-throughput)-compatible assay, called FRET-assay. The acronym FRET stands for Fluorescence Resonance Energy transfer. The principle of the assay is based on the radiationless transfer of energy from an excited donor fluorophore (Europium Cryptate) to a suitable acceptor fluorophore (XL665). The first step was the expression and purification of the geminin-cdt1 complex. The complex was expressed by using E. coli bacterial cells and purified by metal affinity chromatography on a Ni+2 column. As soon as the complex was ready to use, we next tried to investigate whether the formation of the complex was detectable by using the FRET assay. Indeed, at the complex concentration of 60nM and 80nM, the signal was about 5 times above background. This was a first indication that the Geminin-Cdt1 complex can be used successfully for energy transfer based assays. Given the very high binding affinity of the two proteins (Lee C. et al., 2004), it could be quite unlikely to find a compound that can disrupt the complex. To overcome that obstacle, three single mutations were made at the highly conserved Geminin-contacting residues of hCdt1, Y170, F173 and L176. The mutation of these residues to alanine can possibly provide a more easily disruptable complex, which could be of importance concerning the faster and easier identification of any candidate compounds. Our data suggest that hGeminin-Cdt1 complex can be considered as a promising target for compound screening. Given the high importance of Geminin-Cdt1 balance for maintaining genomic stability integrity and that both proteins have been correlated with cases of cancer, that screening could hopefully lead to the discovery and development of lead compounds towards anti-cancer drugs.
8

In vivo χαρακτηρισμός του ανθρώπινου παράγοντα αδειοδότησης Cdt1 και του αρνητικού ρυθμιστή αυτού, Geminin, κατά τη διάρκεια του κυτταρικού κύκλου / In vivo characterization of the human licensing factor Cdt1 and its negative inhibitor, Geminin, during the cell cycle.

Ξουρή, Γεωργία 25 June 2007 (has links)
Η ορθή και απρόσκοπτη διαδοχή των φάσεων του κυτταρικού κύκλου εξασφαλίζει την πιστότητα στην αντιγραφή του γενετικού υλικού και τη μεταφορά αμιγώς της γενετικής πληροφορίας στα θυγατρικά κύτταρα. Το κύτταρο διαθέτει μια σειρά από μηχανισμούς ελέγχου που διασφαλίζουν ότι η αντιγραφή του γενετικού υλικού πραγματοποιείται μόνο μια φορά κατά τη διάρκεια της φάσης S και μόνο εφόσον το κύτταρο εξέλθει από τη φάση της μίτωσης. Οποιαδήποτε απορύθμιση στους μηχανισμούς ελέγχου του κυττάρου, μπορεί να οδηγήσει σε γενετική αστάθεια, βασικό γνώρισμα των καρκινικών κυττάρων. Ένα σημαντικό σημείο ελέγχου στους ευκαρυωτικούς οργανισμούς αποτελεί η μετάβαση από τη φάση G1 στη φάση S. Η μετάβαση αυτή ελέγχεται από το σχηματισμό του προ-αντιγραφικό σύμπλοκο στις αφετηρίες έναρξης της αντιγραφής με σκοπό την ορθή τοπικά και χρονικά έναρξη της αντιγραφής, μέσα από μια διαδικασία που ονομάζεται ‘αδειοδότηση της αντιγραφής’. Ένας από τους σημαντικότερους παράγοντες του προ-αντιγραφικού συμπλόκου είναι ο Cdt1, που εμφανίζεται εξελικτικά συντηρημένος από το ζυμομύκητα μέχρι τον άνθρωπο. Στους ανώτερους οργανισμούς, ο παράγοντας Cdt1 υφίσταται αυστηρή ρύθμιση κατά τη διάρκεια του κυτταρικού κύκλου, ενώ η υπερέκφρασή του δύναται να οδηγήσει σε καρκινική εξαλλαγή, γεγονός που υποδηλώνει τον κεντρικό ρόλο που κατέχει στην αδειοδότηση της αντιγραφής. Πρόσφατα βρέθηκε ο μοριακός αναστολέας του Cdt1, Geminin, ο οποίος πιστεύεται ότι παρέχει ένα επιπρόσθετο επίπεδο ρύθμισης του Cdt1 στους ανώτερους εξελικτικά οργανισμούς. Στα πλαίσια της παρούσας διδακτορικής διατριβής, το ενδιαφέρον μας εστιάστηκε στη μελέτη του παράγοντα Cdt1, καθώς και του αναστολέα αυτού, Geminin, σε ανθρώπινα κύτταρα. Συγκεκριμένα, μελετήθηκε η ρύθμιση που υφίστανται οι ενδογενείς παράγοντες Cdt1 και Geminin κατά την μετάβαση στη φάση ηρεμίας, καθώς και τα επίπεδα έκφρασης τους σε καρκινικές κυτταρικές σειρές και καρκινικούς ιστούς. Τα πειράματα αυτά υποδεικνύουν ότι οι παράγοντες Cdt1 και Geminin ελέγχονται σε μεταγραφικό επίπεδο κατά τη μετάβαση από και προς τη φάση ηρεμίας G0, αφού τα επίπεδα της πρωτεΐνης και του mRNA τους μειώνονται αισθητά κατά τη μετάβαση στη φάση ηρεμίας και συσσωρεύονται σταδιακά κατά την επαναφορά στον κυτταρικό κύκλο. Επιπλέον, οι παράγοντες Cdt1 και Geminin βρέθηκαν να υπερεκφράζονται σε όλες τις καρκινικές κυτταρικές σειρές και καρκινικούς ιστούς που εξετάστηκαν σε σύγκριση με τα αντίστοιχα φυσιολογικά δείγματα. Εν συνεχεία η μελέτη προσανατολίστηκε στη διερεύνηση του τρόπου δράσης του παράγοντα Cdt1 στη διαδικασία αδειοδότησης της αντιγραφής in vivo, με χρήση σύγχρονων τεχνικών μικροσκοπίας σε ζωντανά ανθρώπινα κύτταρα σε καλλιέργεια. Για τις μελέτες αυτές δημιουργήθηκε σταθερά διαμολυσμένη κυτταρική σειρά που εκφράζει την πρωτεΐνη Cdt1 σε σύντηξη με την πράσινη φθορίζουσα πρωτεϊνη GFP (Cdt1GFP)σε φυσιολογικά επίπεδα. Πειράματα ανοσοφθορισμού και πειράματα μικροσκοπίας time-lapse έδειξαν ότι η πρωτεΐνη Cdt1GFP συμπεριφέρεται όπως η ενδογενής τόσο ως προς τον ενδοκυτταρικό εντοπισμό της, όσο και ως προς τη ρύθμιση κατά τη διάρκεια του κυτταρικού κύκλου. Τα πειράματα αυτά οδήγησαν στο συμπέρασμα ότι η κύρια μορφή ρύθμισης του παράγοντα Cdt1 κατά τη διάρκεια του κυτταρικού κύκλου λαμβάνει χώρα σε μετα-μεταφραστικό επίπεδο και ότι η σύντηξη με την GFP δε φαίνεται να επηρεάζει τη ρύθμιση αυτή. Πειράματα Επαναφοράς Φθορισμού μετά από Φωτολεύκανση (FRAP) σε ζωντανά κύτταρα έδειξαν ότι η πρωτεΐνη Cdt1GFP διαχέεται ελεύθερα κατά το μεγαλύτερο μέρος της μίτωσης, ενώ η αλληλεπίδραση με τη χρωματίνη αρχίζει στη φάση της τελόφασης και συνεχίζεται μέχρι και το τέλος της φάσης G1. Η πρόσδεση του παράγοντα Cdt1 στη χρωματίνη έχει ιδιαίτερα δυναμικό χαρακτήρα, υποδηλώνοντας ότι η δημιουργία του προ-αντιγραφικού συμπλόκου δεν είναι στατική, αλλά επαναπροσδιορίζεται καθ’ όλη τη διάρκεια της φάσης G1. Πειράματα FRAP σε ζωντανά κύτταρα που εξέφραζαν μεταλλαγμένες μορφές του παράγοντα Cdt1 επιπλέον επέτρεψαν την in vivo χαρτογράφηση των περιοχών που χρειάζονται για τη δέσμευση του παράγοντα στη χρωματίνη και κατέδειξαν το αμινοτελικό άκρο και τη θηλιά 2 ως περιοχές απαραίτητες για τη δέσμευση του παράγοντα στη χρωματίνη. Ενδιαφέρον παρουσιάζει το γεγονός ότι περιοχές που συμβάλλουν στην κύρια αλληλεπίδραση με τη Geminin, δεν συμβάλλουν στη δέσμευση του παράγοντα Cdt1 με τη χρωματίνη, σε αντίθεση με ότι είχε προταθεί από in vitro πειράματα. Με σκοπό να ανιχνεύσουμε αλληλεπίδραση του παράγοντα Cdt1 με τον αναστολέα αυτού Geminin σε συγκεκριμένο χώρο και χρόνο σε ζωντανά κύτταρα εφαρμόσαμε μικροσκοπία FLIM. Ειδική αλληλεπίδραση ανιχνεύθηκε σε όλο τον πυρήνα. Αντίθετα, μια μορφή της Geminin μεταλλαγμένη στην περιοχή επαφής με το Cdt1 εμφάνισε σαφώς μειωμένη ικανότητα αλληλεπίδρασης. Ποσοτικοποίηση της αλληλεπίδρασης με μικροσκοπία FLIM επέτρεψε την εκτίμηση της σχετικής συνάφειας (affinity) των δύο βιομορίων στο ζωντανό κύτταρο Πειράματα FRAP υποδηλώνουν ότι η παρουσία της Geminin δεν επηρεάζει τη δέσμευση του Cdt1 στη χρωματίνη. Αντίθετα, ο Cdt1 προσελκύει τη Geminin στη χρωματίνη και επομένως η αναστολή της αδειοδότησης της αντιγραφής πραγματοποιείται στη χρωματίνη. Τα αποτελέσματα αυτής της εργασίας παρέχουν μια νέα εικόνα του τρόπου με τον οποίο πραγματοποιείται η διαδικασία της αδειοδότηση της αντιγραφής φυσιολογικά καθώς και πώς θα μπορούσε να ανασταλεί η διαδικασία αυτή in vivo. / The correct order of cell cycle phases ensures precise duplication of the genome and division of the genetic material to the two daughter cells. The cell has developed several control mechanisms which ensure once per cell cycle DNA replication. Any defects in the regulation of the cell cycle could lead either to genetic aberrations or to the continuous cell division that characterizes cancer cells. In higher eukaryotes, a major control concerns the transition from G1 to S phase. This transition is regulated through the formation of the pre-replicative complex onto the origins of replications and ensures the timely initiation of replication, through a process called Licensing. A crucial component of this complex is Cdt1, which is conserved from yeasts to mammals. In higher eukaryotes, Cdt1 is strictly regulated during the cell cycle as to be present only in G1 phase, while its ectopic expression potentiates over-replication, indicating that plays a key role in S-phase onset. Recently, a molecular inhibitor of Cdt1, called Geminin, has been identified in higher eukaryotes, which is believed to provide an additional level of control over Cdt1. During this research, we focused our interest in the study of Cdt1 and Geminin in human cells. Our first aim was to study the regulation of the endogenous proteins as cells enter quiescence (G0 phase), as well their expression levels in cancer cell lines and cancer tissues. Cdt1 and Geminin appeared to be controlled at the transcription level, as in this transition protein and mRNAs levels for both factors are decreased when cells enter quiescence and gradually re-accumulate as cells re-enter the cell cycle. In addition, Cdt1 and Geminin mRNA and protein accumulate to much higher levels in cancer cells versus normal diploid cells. In the second part of this work we employed advanced microscopy techniques which permit imaging of molecular processes in live cells, in order to study the role of Cdt1 in the process of licensing in vivo. To this end, a human cell line stably expressing physiologically relevant levels of the fusion protein Cdt1GFP was generated. Immunofluorescence and time-lapse experiments revealed that Cdt1GFP recapitulates the behaviour of the endogenous protein in respect to subcellular localization and regulation through the cell cycle. Our data show that post-transcriptional regulation is sufficient to ensure correct cell cycle behaviour of Cdt1 and that GFP does not interfere with function. FRAP experiments showed that Cdt1GFP though most of mitosis is able to diffuse freely, while is transiently bound onto chromatin during telophase and up to the end of G1 phase. The Cdt1-DNA interaction is highly dynamic, indicating that the pre-replicative complex is not stably bound onto chromatin but re-establishes itself throughout the G1 phase. These experiments also allowed in vivo mapping of the Cdt1 domains necessary for DNA binding. Both the amino-terminus and loop 2 domains are necessary for the binding of Cdt1 to chromatin. In contrary to suggestion based on in vitro experiments, domains that contribute to the main interaction with Geminin do not affect the binding of Cdt1 to chromatin. By using Fluorescence Lifetime Imaging Microscopy (FLIM), interactions between Cdt1 and its inhibitor, Geminin, were detected in living cells. This interaction was abolished when a form of Geminin mutated in the Cdt1 binding domain was used. Quantitation of FLIM experiments allowed an assessment of the relative binding affinity of Cdt1 to Geminin within the living cell. FRAP experiments in cells co-expressing Cdt1 and Geminin indicate that Geminin does not affect Cdt1’s binding to chromatin; on the contrary, Cdt1 recruits Geminin onto chromatin and therefore the inhibition of Licensing by Geminin is likely to take place on chromatin. Taken together, our data allow an insight into how Licensing normally takes place and how it can be inhibited in the living cell.
9

Διερεύνηση της ρύθμισης των πρωτεϊνών του κυτταρικού κύκλου Cdt1 και Geminin σε κύτταρα με βλάβες στο DNA και σε αποπτωτικά κύτταρα

Ρούκος, Βασίλειος 08 July 2011 (has links)
Η χρονική και χωρική ρύθμιση της έναρξης της αντιγραφής του DNA συντονίζεται από τη διαδικασία της «αδειοδότησης της αντιγραφής», η οποία εξασφαλίζει ότι η αντιγραφή θα λάβει χώρα μόνο μία φορά ανά κυτταρικό κύκλο. Η αδειοδότηση της αντιγραφής περιλαμβάνει την κατά βήμα συγκρότηση ενός συμπλόκου πρωτεϊνών, του προαντιγραφικού συμπλόκου, στις περιοχές έναρξης της αντιγραφής. Μείζον συστατικό του συμπλόκου αυτού είναι η πρωτεΐνη Cdt1, η οποία επίσης αποτελεί πρωτεολυτικό στόχο των σημείων ελέγχου κυττάρων που φέρουν βλάβες στο DNA. Στα μετάζωα, υπάρχει μια μικρή πρωτεΐνη καλούμενη Geminin, η οποία προσδένεται στην πρωτεΐνη Cdt1, αναστέλλοντας την αδειοδότηση της αντιγραφής. Η πρωτεΐνη Geminin αλληλεπιδρά με ομοιοτικούς μεταγραφικούς παράγοντες και πρωτεΐνες που αναδιαμορφώνουν τη χρωματίνη και πιστεύεται ότι αποτελεί πιθανό κρίκο που συνδέει τις διαδικασίες του κυτταρικού κύκλου και της διαφοροποίησης. Στην παρούσα μελέτη δείξαμε πως η πρωτεΐνη Geminin κατατμείται σε πρωτογενή κύτταρα και καρκινικές κυτταρικές σειρές που οδηγούνται προς απόπτωση. Η κατάτμηση της πρωτεΐνης Geminin διαμεσολαβείται από την κασπάση- 3 τόσο in vivo όσο και in vitro. Δύο περιοχές στο καρβοξυτελικό τμήμα της Geminin (Κ1 και Κ2), στοχεύονται κατά την απόπτωση προκαλώντας τη δημιουργία θρυσμάτων της πρωτεΐνης Geminin. Δείξαμε ότι η κατάτμηση της πρωτεΐνης Geminin στη θέση Κ1 προάγει τον αποπτωτικό φαινότυπο και ρυθμίζεται μέσω φωσφορυλίωσης από την κινάση Casein Kinase II. Αντίθετα, μετά από κατάτμηση στη θέση Κ2, η πρωτεΐνη Geminin χάνει την ικανότητα αλληλεπίδρασης με την πρωτεΐνη Brm, καταλυτική υπομονάδα του συμπλόκου αναδιαμόρφωσης της χρωματίνης SWI/SNF, ενώ διατηρεί την ικανότητα να προσδένεται στην πρωτεΐνη Cdt1, υποδεικνύοντας πως η στόχευση της πρωτεΐνης Geminin κατά την απόπτωση, επηρεάζει διαφορικά τη λειτουργία του μορίου. Στο δεύτερο μέρος της εργασίας διερευνήσαμε τη ρύθμιση της πρωτεΐνης Cdt1 στο χώρο και στο χρόνο σε κύτταρα με βλάβες στο DNA. Για το σκοπό αυτό, χαρακτηρίσαμε μια μέθοδο που προκαλεί εντοπισμένες βλάβες στο DNA των κυττάρων, βασιζόμενη στη χρήση ενός παλμικού UVA laser. Με τη χρήση της μεθόδου αυτής, δείξαμε ότι η πρωτεΐνη Cdt1 συσσωρεύεται στην περιοχή της βλάβης τόσο σε καρκινικά όσο και πρωτογενή κύτταρα, παράλληλα με πρωτεΐνες που εμπλέκονται στην κυτταρική απόκριση στη βλάβη (γH2AX, BRCA1, MRE11, Ku70, pATM κ.ά.). Η συσσώρευση της πρωτεΐνης Cdt1 λαμβάνει χώρα ταχύτατα και προηγείται της αποικοδόμησής της. Με τη δημιουργία μεταλλαγμένων μορφών της πρωτεΐνης Cdt1 και την καταστολή της έκφρασης πρωτεϊνών που αλληλεπιδρούν με την πρωτεΐνη Cdt1 με τη χρήση siRNA, δείξαμε πως η στρατολόγηση της πρωτεΐνης Cdt1 στην περιοχή της βλάβης απαιτεί αλληλεπίδραση με την πρωτεΐνη PCNA. Βρέθηκε πως η πρωτεΐνη Cdt2, που αποτελεί μέλος του συμπλόκου της λιγάσης της ουβικουϊτίνης Cul4-DDB1Cdt2 επίσης στρατολογείται στην περιοχή της βλάβης. Ποσοτικοποίηση της κινητικής συσσώρευσης πρωτεϊνών στην περιοχή της βλάβης έδειξε ότι η συσσώρευση της πρωτεΐνης Cdt1 υφίσταται κορεσμό νωρίτερα από τις πρωτεΐνες PCNA και Cdt2, ενώ αποσιώπηση της πρωτεΐνης Cdt1 δεν επηρεάζει τη στρατολόγηση των πρωτεϊνών PCNA και Cdt2. Πειράματα προσδιορισμού κινητικών αλληλεπιδράσεων με τη μέθοδο FRAP, έδειξαν ότι η πρωτεΐνη PCNA παραμένει σταθερά προσδεδεμένη στην περιοχή της βλάβης, ενώ η πρωτεΐνη Cdt1 εμφανίζει ιδιαίτερα γρήγορη κινητική. Οι μελέτες αυτές οδηγούν στο συμπέρασμα ότι η πρόκληση εντοπισμένης βλάβης στο DNA οδηγεί σε εντοπισμένη κυτταρική απόκριση και στη στρατολόγηση της πρωτεΐνης PCNA στην περιοχή της βλάβης η οποία δρά ως ικρίωμα για τη δυναμική αλληλεπίδραση της πρωτεΐνης Cdt1. Συμπερασματικά, στο πρώτο μέρος της διδακτορική διατριβής περιγράφεται για πρώτη φορά ότι η πρωτεϊνη Geminin στοχεύεται για κατάτμηση κατά την απόπτωση, διαλευκάνονται τα μοριακά μονοπάτια που ρυθμίζουν το φαινόμενο αυτό και διερευνάται η φυσιολογική του σημασία. Προτείνεται ότι η στόχευση της Geminin από την κασπάση 3 επηρεάζει τη φυσιολογική ισορροπία μεταξύ κυτταρικού πολλαπλασιασμού και διαφοροποίησης. Στο δεύτερο μέρος της διδακτορικής διατριβής δείχνεται ότι η πρωτεϊνη Cdt1 στρατολογείται σε περιοχές της χρωματίνης που φέρους βλάβες στο DNA. Η στρατολόγηση της πρωτεΐνης Cdt1 στην περιοχή της βλάβης, παράλληλα με πρωτεϊνες απόκρισης στη βλάβη όπως οι BRCA1, pATM και Ku70, οδηγεί σε μία νέα υπόθεση για πιθανή εμπλοκή της πρωτεϊνης Cdt1 στην κυτταρική απόκριση σε βλάβες στο DNA. / The timely initiation of DNA replication is achieved through a process called licensing, which ensures that only after passage through mitosis the chromatin becomes competent for a new round of DNA replication. Licensing involves the stepwise formation of a multiprotein complex at the origins of replication, called prereplicative complex. A major component of this complex is Cdt1, which is also a critical and evolutionarily conserved proteolytic target of the DNA damage checkpoint. In metazoans, a small protein called Geminin binds to Cdt1, inhibiting replication licensing. Geminin has been proposed to coordinate cell cycle and differentiation events through balanced interactions with the cell cycle regulator Cdt1 and with homeobox transcription factors and chromatin remodeling activities implicated in cell fate decisions. Here we show that Geminin is cleaved in primary cells and cancer cell lines induced to undergo apoptosis by a variety of stimuli. Geminin targeting is mediated by caspase-3 both in vivo and in vitro. Two sites at the carboxyl terminus of Geminin are cleaved by the caspase (termed K1 and K2), producing truncated forms of Geminin. We provide evidence that Geminin cleavage is regulated by phosphorylation by Casein kinase II. Geminin cleaved at site K1 has a proapoptotic effect. Geminin cleaved at the site K2 has lost the ability to interact with Brahma (Brm), a catalytic subunit of the SWI/SNF chromatin remodeling complex, while binding efficiently to Cdt1, indicating that targeting of Geminin during apoptosis differentially affects interactions with its binding partners. In the second part of this thesis, we investigated the spatiotemporal regulation of Cdt1 in DNA-damaged cells. We introduced and characterized a method of inducing localized DNA damage, based on a UVA-pulsed laser. Using this method, we show that Cdt1 is recruited at the site of damage in parallel to the recruitment of known response factors, such as γH2AX, BRCA1, MRE11, Ku70 etc. Cdt1 recruitment at the site of damage precedes its degradation in both cancer cell lines and primary cells. Mutated forms of Cdt1 and siRNA for Cdt1-interacting proteins show that Cdt1 accumulation at the site of damage requires interactions with the protein PCNA. In addition, we found that Cdt2, a member of the Cul4-DDB1Cdt2 complex that ubiquitinates Cdt1 after DNA damage, is recruited at the site of damage. Experiments of knocking down the protein expression using siRNA and quantification of the recruitment kinetics address the molecular interplay of these proteins for the recruitment at the site of damage, while FRAP experiments revealed their dynamics. Taken together our results suggest that following DNA damage, PCNA is recruited to the site of damage, and acts as a scaffold for the dynamic interaction of Cdt1 with the damaged sites. The accumulation of Cdt1 at the site of damage suggest a possible involvement this cell cycle regulator in the DNA damage response.
10

Μελέτη του συμπλόκου αδειοδότησης της αντιγραφής του DNA με μεθόδους λειτουργικής απεικόνισης βιομορίων σε ανθρώπινα κύτταρα και της εμπλοκής αυτού στην καρκινογένεση

Συμεωνίδου, Ιωάννα Ελένη 06 December 2013 (has links)
Η διατήρηση της γονιδιωματικής σταθερότητας προϋποθέτει τη σωστή διαδοχή των φάσεων του κυτταρικού κύκλου. Σημαντικό μηχανισμό ελέγχου αποτελεί η αδειοδότηση της αντιγραφής του DNA, η οποία εξασφαλίζει την πλήρη αντιγραφή του γονιδιώματος μία μόνο φορά κατά τη διάρκεια κάθε κυτταρικού κύκλου. Η διαδικασία αυτή λαμβάνει χώρα στο τέλος της μίτωσης και κατά τη φάση G1 και περιλαμβάνει τη συγκρότηση των προ-αντιγραφικών συμπλόκων στις αφετηρίες της αντιγραφής του DNA. Τα σύμπλοκα αυτά απαρτίζονται από τις πρωτεΐνες MCM2-7 οι οποίες έχουν ενεργότητα ελικάσης. Σημαντικό παράγοντα αδειοδότησης αποτελεί η πρωτεΐνη Cdt1, η οποία συσσωρεύεται κατά τη φάση G1 του κυτταρικού κύκλου και απαιτείται για τη στρατολόγηση των ελικασών MCM2-7 στις αφετηρίες της αντιγραφής του DNA. Στα μετάζωα, η πρωτεΐνη Geminin, η οποία εκφράζεται κατά τις φάσεις S, G2 και Μ, αποτελεί αναστολέα του παράγοντα Cdt1 και προσδένεται σε αυτόν παρεμποδίζοντας την αδειοδότηση της αντιγραφής. Αρκετές μελέτες έχουν καταδείξει ότι η εκτοπική υπερέκφραση της πρωτεΐνης Cdt1 επάγει την επανέναρξη της αντιγραφής του DNA και τον υπερδιπλασιασμό του γονιδιώματος συμβάλλοντας στην ογκογένεση. Στο πρώτο μέρος της παρούσας εργασίας μελετήθηκε η έκφραση του παράγοντα Cdt1 σε κλινικά δείγματα όγκων μαστού. Από την ανάλυση διαπιστώθηκε ότι η πρωτεΐνη Cdt1 υπερεκφράζεται στατιστικώς σημαντικά στην περιοχή του όγκου σε σύγκριση με τον παρακείμενο μη νεοπλασματικό ιστό, γεγονός που καταδεικνύει την πιθανή αξία του παράγοντα ως διαγνωστικού βιοδείκτη. Επιπλέον, η υπερέκφραση του συγκεκριμένου παράγοντα δείχθηκε ότι συσχετίζεται αντίστροφα με την παρουσία ή μη οιστρογονικών (ER) και προγεστερονικών υποδοχέων (PR). Επίσης, διαπιστώθηκε στατιστικώς σημαντική συσχέτιση μεταξύ της έκφρασης του παράγοντα Cdt1 και της έκφρασης του δείκτη πολλαπλασιασμού Ki67 καθώς και του υποδοχέα HER2/neu. Οι παρατηρήσεις αυτές υποδηλώνουν ότι ο παράγοντας Cdt1 ενδέχεται να αποτελεί δείκτη άσχημης πρόγνωσης στον όγκο μαστού. Επιπλέον η ανάλυση κατέδειξε σημαντική υπερέκφραση της πρωτεΐνης Cdt1 σε όγκους θετικούς για τον υποδοχέα HER2/neu σε σύγκριση με τα περιστατικά που δεν εξέφραζαν τον υποδοχέα. Δεδομένου ότι στο 95% των περιπτώσεων όγκων μαστού όπου διαπιστώνεται υπερέκφραση του υποδοχέα HER2/neu, αυτή οφείλεται σε ενίσχυση του αντίστοιχου γονιδίου, διερευνήθηκε κατά πόσο η γονιδιακή ενίσχυση θα μπορούσε να αποτελεί λειτουργική επίπτωση της ογκογόνου δράσης του παράγοντα Cdt1 στον όγκο μαστού. Η υπερέκφραση των παραγόντων αδειοδότησης Cdt1 και Cdc6 στις καρκινικές κυτταρικές σειρές HeLa και MCF7 είχε ως αποτέλεσμα την ανάπτυξη ανθεκτικών αποικιών στη μεθοτρεξάτη. Έχει δειχθεί ότι η ανθεκτικότητα στο φάρμακο αυτό οφείλεται κατά κύριο λόγο στη γονιδιακή ενίσχυση του ενζύμου διυδροφολική αναγωγάση (DHFR). Συνεπώς, είναι πιθανό η υπερέκφραση του παράγοντα Cdt1 να συμβάλλει στη δημιουργία γονιδιακής ενίσχυσης. Στο δεύτερο μέρος της εργασίας μελετήθηκε η κινητική συμπεριφορά των πρωτεϊνών MCM2-7 με μεθόδους λειτουργικής μικροσκοπίας. Αρχικά αναπτύχθηκε ένα σύστημα μελέτης το οποίο βασίζεται στις μεθόδους FRAP και FLIP και επιτρέπει τη μελέτη της δυναμικής συμπεριφοράς των πρωτεϊνών MCM και κατ’ επέκταση τη χωροχρονική ποσοτική εκτίμηση της αδειοδότησης της αντιγραφής του DNA σε ζωντανά ανθρώπινα κύτταρα. Η ανάλυση της κινητικής των πρωτεϊνών MCM2 και MCM4 7. Περίληψη - Abstract - 212 - αποκάλυψε σημαντική διαφορά σε σύγκριση με την αντίστοιχη του παράγοντα Cdt1, καθώς οι πρωτεΐνες MCM παρουσιάζουν πιο σταθερή αλληλεπίδραση με τη χρωματίνη. Επίσης, διαπιστώθηκε σταδιακή πρόσδεση των πρωτεϊνών MCM στη χρωματίνη με την πρόοδο της φάσης G1, περαιτέρω πρόσδεση μορίων MCM στο τέλος της φάσης αυτής και σταδιακή αποδέσμευση αυτών από τη χρωματίνη καθώς εξελίσσεται η φάση S. Πειράματα FLIP αποκάλυψαν ότι η αλληλεπίδραση των πρωτεϊνών MCM με τη χρωματίνη λαμβάνει χώρα σε συγκεκριμένες υποπυρηνικές περιοχές. Οι περιοχές αυτές αυξάνονται σε αριθμό με την πρόοδο της φάσης G1 και ελαττώνονται με την εξέλιξη της φάσης S. Η παρατήρηση των υποπεριοχών αυτών κατά τη φάση S κατέδειξε ότι δεν συμπίπτουν με τις υποδομές της πρωτεΐνης PCNA, γεγονός που υποδεικνύει ότι οι πρωτεΐνες MCM2-7 δεν εντοπίζονται στις περιοχές σύνθεσης του DNA. Επιπλέον, διερευνήθηκε η πιθανή επίδραση της πρωτεΐνης Geminin στην κινητική συμπεριφορά των πρωτεϊνών MCM. Πειράματα αποσιώπησης της έκφρασης της πρωτεΐνης Geminin είχαν ως αποτέλεσμα τη μείωση του δεσμευμένου κλάσματος των πρωτεϊνών MCM2 και MCM4 κατά τη διάρκεια της φάσης G1, καθώς και την αποσταθεροποίηση των ήδη δεσμευμένων μορίων στο τέλος της φάσης αυτής. Επίσης, η απουσία της πρωτεΐνης Geminin είχε ως αποτέλεσμα την αδυναμία των κυττάρων να εισέλθουν στη φάση S. Συμπερασματικά, στο πρώτο μέρος της παρούσας εργασίας καταδείχθηκε η πιθανή αξία του παράγοντα Cdt1 ως διαγνωστικού και προγνωστικού βιοδείκτη στον όγκο μαστού. Επιπλέον, διαπιστώθηκε ότι η υπερέκφραση του παράγοντα Cdt1 πιθανώς συμβάλλει στη δημιουργία γονιδιακής ενίσχυσης, παρατήρηση που προτείνει ένα νέο μηχανισμό ογκογόνου δράσης του παράγοντα αυτού. Στο δεύτερο μέρος της εργασίας διαπιστώθηκε ότι η κινητική των πρωτεϊνών MCM2 και MCM4 αλλάζει κατά τη διάρκεια των φάσεων G1 και S. Επίσης, η πρωτεΐνη Geminin δείχθηκε ότι απαιτείται για την πρόσδεση των πρωτεϊνών MCM στη χρωματίνη και για την πρόοδο των κυττάρων από τη φάση G1 στη φάση S, παρατήρηση που καταδεικνύει ένα πιθανό θετικό ρόλο της πρωτεΐνης Geminin στην αντιγραφή του DNA. / Tight regulation of the DNA replication initiation is crucial for the maintenance of genomic integrity. Faithful replication in time and space is ensured by a process called DNA licensing, which takes place in late mitosis and during G1 phase. Licensing involves the stepwise assembly of pre-replicative complexes at origins of replication. These complexes render DNA origins competent to initiate replication. Cdt1 is an essential regulator of DNA licensing that accumulates only in G1 phase of the cell cycle and is required for the recruitment of MCM2-7 helicases onto replication origins. In metazoans, Cdt1 is negatively regulated by a protein called Geminin, which is expressed from S to M phases. Geminin binds to Cdt1 preventing replication licensing. Several lines of evidence suggest that Cdt1 overexpression in cell lines and animals drives rereplication and contributes to genomic instability. In the first part of this thesis, Cdt1 expression levels were analyzed in breast cancer specimens. Cdt1 protein expression was correlated to clinicopathological parameters of the disease, proliferation index and HER2/neu status. Analysis revealed that Cdt1 was statistically significantly overexpressed in the invasive tumor areas compared to adjacent non-neoplastic tissue. Moreover, a significant inverse correlation was established between Cdt1 expression levels and oestrogen receptor (ER) and progesterone receptor (PR) status. A significant positive correlation of Cdt1 expression with the proliferation index Ki67 was demonstrated. These observations imply that Cdt1 may constitute a useful prognostic and diagnostic biomarker for breast cancer. Additionally, Cdt1 expression levels were significantly higher in HER2/neu score 3+ tumors (known to show HER2/neu gene amplification by FISH in 95% of cases) compared to HER2/neu negative tumors (known to show HER2/neu gene amplification by FISH in only 0-7% of cases). This observation prompted us to investigate whether gene amplification is a direct consequence of Cdt1 overexperssion. To this end, Cdt1 and Cdc6 were overexpressed in HeLa and MCF7 cell lines. The overexperssion of these licensing factors resulted in the generation of methotrexate resistance colonies. Given that the major cause of resistance to methotrexate is the increased expression levels of the enzyme dihydrofolate reductase (DHFR) due to gene amplification, it is probable that Cdt1 overexpression may lead to this type of genomic instability. In the second part of this thesis, live cell imaging techniques were used to assess dynamics of licensing within the cell nucleus. In particular, we established an in vivo licensing assay, which is based on FRAP and FLIP techniques and permits the investigation of the kinetics of MCM helicases within live human cells. FRAP analysis of GFP-MCM2 and GFP-MCM4 kinetics revealed that MCMs maintain stable association with chromatin during G1 phase in contrast to Cdt1, which exhibits transient interaction with chromatin throughout G1 phase. Moreover it was shown that MCMs are gradually bound to chromatin as G1 phase progresses, being maximally bound in late G1, before the onset of DNA replication and are displaced from chromatin during the course of S phase. Fluorescence-Loss-In-Photobleaching (FLIP) experiments indicated that MCM-chromatin association is not homogenous throughout the nucleus but shows subnuclear concentrations which differ as cells progress through G1 and are adjacent to sites of ongoing DNA synthesis in S phase cells. Moreover, it was shown that Geminin is required for MCM proteins being stably bound to chromatin as well as for proper progression of 7. Περίληψη - Abstract - 214 - cells from G1 to S phase. Taken together our results suggest additional levels of regulation of MCM chromatin association during G1 and S phases. Furthermore, Geminin appears to have a positive regulatory role in DNA replication.

Page generated in 0.066 seconds