• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • 1
  • Tagged with
  • 15
  • 9
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Cell Cycle Arrest by TGFß1 is Dependent on the Inhibition of CMG Helicase Assembly and Activation

Nepon-Sixt, Brook Samuel 30 June 2016 (has links)
Tumorigenesis is a multifaceted set of events consisting of the deregulation of several cell-autonomous and tissue microenvironmental processes that ultimately leads to the acquisition of malignant disease. Transforming growth factor beta (TGFß) and its family members are regulatory cytokines that function to ensure proper organismal development and the maintenance of homeostasis by controlling cellular differentiation, proliferation, adhesion, and survival, as well as by modulating components of the cellular microenvironment and immune system. The pleiotropic control by TGFß of these cell intrinsic and extrinsic factors is intimately linked to the prevention of tumor formation, the specifics of which are dependent on the various cellular and/or molecular signaling contexts that exist for TGFß. The diverse roles and the various levels of signal control for TGFß lend themselves to certain characteristics that are more advantageous for cancers to usurp in order to promote tumorigenesis, while other anti-tumorigenic roles for TGFß are more beneficial to tumor development if they are circumvented or disabled. Transforming growth factor ß1 (TGF-ß1) exerts its anti-tumor effects in large part by potently inhibiting cell cycle progression at any point in G1 phase to control the proliferation of a variety of cell lineages. Loss of sensitivity to TGF-ß1-induced cell cycle arrest is a crucial event during early tumorigenesis. Indeed, cancer cells of almost all tumor types display insensitivity to TGF-ß1 inhibition. As such, the pursuit of the molecular details underlying the TGF-ß1 growth arrest pathway is important for our understanding of cell cycle regulation, and significantly, how disruption of these mechanisms contributes to TGF-ß1 insensitivity and tumorigenesis. TGF-ß1 inhibition of the cell cycle in G1 phase has been shown to involve two main transcriptionally based molecular events, including the induction of cyclin-dependent kinase (CDK) inhibitors and the suppression of the c-Myc protein. Both mechanisms contribute to the maintenance of the retinoblastoma (Rb) protein in its hypophosphorylated and antiproliferative form, thus preventing progression through the cell cycle. However, this type of regulation does not offer answers to all of the questions regarding TGF-ß1 arrest. While these transcriptional mechanisms provide explanations for TGF-ß1 arrest throughout most of G1, inhibition late in G1 by TGF-ß1 however, does not require any acute regulation of transcription. In addition, the chance to utilize canonical TGF-ß1 arrest mechanisms at this time has already passed (i.e. Rb is already hyperphosphorylated by late-G1). Previous work from our group shows instead that late-G1 TGF-ß1 cell cycle arrest requires an intact direct interaction between the N-terminus of Rb (RbN) and the C terminus of Mcm7, a subunit of the Cdc45-MCM-GINS (CMG) replicative helicase. Our studies show that TGF-ß1 exposure in late-G1 prevents the disassociation of Rb with fully assembled helicases, which remain inactive. In addition, it was found that early-G1 treatment with TGF-ß1 also targets CMG components, namely MCM protein accumulation (and therefore hexamer formation) in G1 is blocked. However, the residue(s) of RbN involved as well as the molecular mechanisms Rb utilizes for late-G1 TGF-ß1 arrest are not described, nor is it evident from this work if TGF-ß1 affects other genes involved in CMG assembly and/or activation. In the following study we explore these unanswered questions for TGF-ß1 growth arrest as a means to understand novel aspects of cell cycle regulation that must be abrogated during tumorigenesis. Our hypothesis is that CMG helicase control on some level is critical for all TGF-ß1-induced inhibition of cell cycle progression throughout the entire G1 phase. In Chapter 2 herein we have investigated the details and mechanistic implications of the Rb/RbN inhibitory-interaction with the CMG helicase that is required for late-G1 TGF-ß1 arrest. We show that N-terminal exons of Rb that are lost in partially penetrant hereditary retinoblastomas inhibit DNA replication and elongation using a bipartite mechanism. Specifically, Rb exon 7 is necessary and sufficient to inhibit CMG helicase activation, while an independent loop domain within RbN that forms a projection blocks DNA polymerase α (Pol-α) and Ctf4 recruitment without affecting polymerases δ and ε or the CMG helicase. Individual disruption of exon 7 or the projection in RbN or Rb, as occurs in inherited cancers, partially impairs the ability of Rb/RbN to inhibit DNA replication and block G1-S cell cycle transit. Importantly, their combined loss abolishes these functions of Rb. Thus, TGF-ß1 cell cycle arrest in late-G1 requires the growth suppressive role of Rb in which replicative complexes are blocked directly via independent and additive N-terminal domains. TGF-ß1-induced arrest in late-G1 also requires the presence of Smad3 and Smad4, suggesting that a novel transcription-independent role may exist for Smad signaling proteins in blocking cell cycle transit directly in Rb-CMG inhibitory complexes. TGF-ß1 is thought to require a functional Rb protein to inhibit the cell cycle at any point in G1 phase. Intriguingly, while cells lacking Rb (and the inhibitory N-terminal domains) lose sensitivity to TGF-ß1 arrest in late-G1, these same cells remain sensitive to TGF-ß1 inhibition in early-G1. This Rb-independent TGF-ß1 growth arrest also occurs in the absence of c-Myc and MCM suppression, as well as without CyclinE-Cdk2 inhibition, but requires Smad3 and Smad4 respectively. Here (Chapter 3) we have identified the mechanism by which TGF-ß1 achieves Smad-dependent G1 arrest in the absence of these common mediators. TGF-ß1 inhibits the assembly of CMG replicative helicases by suppressing the recruitment of the MCM complex to chromatin. Accordingly, the entire heterohexamer fails to load onto DNA. Cdc6 phosphorylation in its amino terminus is known to be required for Cdt1-dependent loading of the MCM complex. We show that in Rb-lacking cells early-G1 TGF-ß1 treatment blocks the phosphorylation of Cdc6 at serine 54, without affecting total Cdc6 protein levels, to prevent MCM heterohexamer formation on DNA. Consistent with TGF-ß1 signals targeting this recruitment and loading step, Cdt1 overexpression promotes S-phase entry in the presence of TGF-ß1, circumventing the need for Cdc6 phosphorylation. Importantly, Cdt1 requires an intact C-terminal MCM-binding domain in order to overcome this TGF-ß1-induced cell cycle arrest mechanism. These data indicate that early-G1 TGF-ß1 arrest can occur by perturbing Cdc6 phosphorylation to block Cdt1-mediated MCM recruitment and loading, leading to inhibition of CMG assembly and S-phase entry despite the lack of Rb and normal c-Myc and CyclinE-Cdk2 activities. We conclude that the main event governing TGF-ß1-induced cell cycle arrest at any point in G1 is the inhibition of the assembly and/or activation of the replicative CMG helicase. However, TGF-ß1 growth arrest has a temporal dependence on the presence of the Rb protein. In normal cells containing Rb, the accumulation of MCM subunit proteins is blocked by TGF-ß1 in early-G1 and accordingly MCM heterohexamers are unable to form. However, if cells are allowed to transit to late-G1 when MCM complexes have already assembled on origins, but before functional CMG helicases have formed at G1-S, exposure to TGF-ß1 signaling prevents CMG activation via interactions with critical inhibitory domains within RbN. Cells lacking Rb (and these residues) are not sensitive to TGF-ß1 in late-G1. Surprisingly, these cells remain sensitive to TGF-ß1 early in G1 phase despite a lack of c-Myc/MCM protein suppression and CyclinE-Cdk2 inhibition. In these cells the recruitment and loading of the MCM complex is blocked to facilitate a TGF-ß1-mediated G1 arrest. It is only when this mechanism is overcome by Cdt1 overexpression that TGF-ß1 is unable to elicit cell cycle arrest in these cells. These data provide molecular explanations for studies reporting instances of TGF-ß1 arrest without canonical effectors, such as Rb, c-Myc loss, or CDK inhibitors. Additionally, this work argues for the development of novel cancer therapeutics targeting CMG helicase assembly or activation, the regulation of which is likely lost in a variety of TGF-ß1-insensitive and/or Rb-deficient malignancies. Indeed, reintroduction of these tumor suppressive pathways has shown efficacy in blocking growth of tumors or cancer cells lacking the same mechanisms. Our studies of Rb/RbN inhibition of DNA replication also provide proof of principle for this type of therapy, as well as the framework for how the CMG might be targeted by exploring further and perhaps mimicking Rb exon7-mediated CMG inhibition biochemically.
12

Post-replicative resolution of under-replication

Carrington, James T. January 2017 (has links)
The evolutionary pressure to prevent re-replication by inactivating licensing during S phase leaves higher-eukaryotes with large genomes, such as human cells, vulnerable to replication stresses. Origins licensed in G1 must be sufficient to complete replication as new origins cannot be licensed in response to irreversible replication fork stalling. Interdisciplinary approaches between cellular biology and biophysics predict that replication of the genome is routinely incomplete in G2, even in the absence of external stressors. The frequency of converging replication forks that never terminate due to irreversible stalling (double fork stall), which result in a segment of unreplicated DNA, was modelled using high quality origin-mapping data in HeLa and IMR-90 cells. From this, hypotheses were generated that related an increase in unreplicated segments of DNA to reduced functional origin number. Presented in this thesis is the confirmation of this relation by quantifying chromosome mis-segregation and DNA damage responses when origin number was reduced using RNAi against licensing factors. The number of ultrafine anaphase bridges and 53BP1 nuclear bodies are in remarkable concordance with the theoretical predictions for the number of double fork stalls, indicating that cells are able to tolerate under-replication through such post-replicative cellular responses. 53BP1 preferentially binds to chromatin associated with large replicons, and functions synergistically with dormant origins to protect the stability of the genome. Additional candidates, inspired by common fragile site research, have also been characterised as responders to spontaneous under-replication, and include FANCD2 and MiDAS, which function in early mitosis to facilitate completion of replication before cells enter anaphase. In conclusion, a series of mechanisms that sequentially function throughout the cell cycle protects the stability of the human genome against inevitable spontaneous under-replication brought about by its large size.
13

Μελέτη των ρυθμιστών του κυτταρικού κύκλου Cdt1 και Geminin υπό συνθήκες γενοτοξικού στρες

Ηλιού, Μαρία 19 January 2011 (has links)
Μηχανισμοί οι οποίοι εξασφαλίζουν τη σωστή διαδοχή των φάσεων του κυτταρικού κύκλου συμβάλλουν στη διασφάλιση της γονιδιωματικής σταθερότητας των κυττάρων. Η αδειοδότηση της αντιγραφής του DNA, η συγκρότηση επί των αφετηριών της αντιγραφής του DNA του προ-ανιγραφικού συμπλόκου, καθορίζει τη σωστή χρονικά και τοπικά έναρξη της αντιγραφής. Βασικό συστατικό αυτού του συμπλόκου είναι ο παράγοντας Cdt1. Η Geminin προσδένεται στο Cdt1, αναστέλοντας τη δράση του από την S μέχρι και την Μ φάση, παρεμποδίζοντας, έτσι, την αδειοδότηση της αντιγραφής. Παρά το οτι φυσική αλληλεπίδραση των δύο πρωτεϊνών έχει δειχθεί τόσο in vitro όσο και in vivo, προηγούμενες μελέτες δείχνουν οτι έκφραση των Cdt1 και Geminin εντοπίζεται σε διαφορετικές φάσεις του κυτταρικού κύκλου. Τα φυσιολογικά κύτταρα, ανάλογα με τα μηνύματα που δέχονται, είτε παραμένουν σε μιτωτικό κύκλο, είτε εξέρχονται από αυτόν προς φάση ηρεμίας (ή G0), διαφοροποίηση ή γήρανση. Αυστηρός συντονισμός των παραπάνω διαδικασιών είναι απαραίτητος προκειμένου να διασφαλιστεί η ομοιόσταση των πολύπλοκων δομών των ιστών των μεταζώων. Προηγούμενες μελέτες προτείνουν το σύστημα της αδειοδότησης της αντιγραφής του DNA ως έναν βασικό ρυθμιστή της εξόδου από τον κυτταρικό κύκλο και της επανεισόδου στη G1. Οι παράγοντες Cdt1 και Geminin ρυθμίζονται αρνητικά κατά την έξοδο των κυττάρων σε G0, ενώ έκφρασή τους χαρακτηρίζει διαιρούμενα κύτταρα. Σε αντίθεση με τις άλλες καταστάσεις εκτός κυτταρικού κύκλου, λίγα είναι γνωστά αναφορικά με τη ρύθμιση των Cdt1 και Geminin κατά την κυτταρική γήρανση. Στο πρώτο μέρος της διατριβής εστιαστήκαμε στη μελέτη του προτύπου έκφρασης των Cdt1 και Geminin κατά τη διάρκεια του κυτταρικού κύκλου πρωτογενών ανθρώπινων ινοβλαστών, και στη σύγκρισή του με εκείνο των καρκινικών κυττάρων. Διαπιστώσαμε οτι τόσο η ενδοκυτταρική εντόπιση όσο και η ικανότητα των Cdt1 και Geminin να εκφράζονται σε συγκεκριμένες φάσεις του κυτταρικού κύκλου, δεν διαφοροποιούνται στους πρωτογενείς φυσιολογικούς ινοβλάστες σε σχέση με κύτταρα που προέρχονται από καρκινικό ιστό. Επιπλέον, δείξαμε οτι ο παράγοντας Cdt1 εκφράζεται αποκλειστικά σε BrdU-αρνητικά κύτταρα, σε αντίθεση με την Geminin, η οποία δείχνει να συσσωρεύεται σταδιακά μετά την έναρξη της S φάσης, ενώ δεν εντοπίστηκε συνέκφραση των δύο πρωτεϊνών στο χρονικό παράθυρο της G1/S μετάβασης. Στο δεύτερο μέρος της εργασίας εστιαστήκαμε στη μελέτη της έκφρασης του παράγοντα αδειοδότησης Cdt1 και του αρνητικού ρυθμιστή αυτού, Geminin, κατά την είσοδο των κυττάρων σε κυτταρική γήρανση και εξετάσαμε την πιθανή λειτουργική εμπλοκή τους στην εξέλιξη του φαινομένου. Δείξαμε οτι, ενώ οι παράγοντες Cdt1 και Geminin διατηρούν τη σωστή ενδοκυτταρική εντόπιση και το σωστό πρότυπο έκφρασης κατά τη διάρκεια του κυτταρικού κύκλου, υφίστανται αρνητική ρύθμιση σε κύτταρα που εισέρχονται σε κυτταρική γήρανση, τόσο αναπαραγωγική όσο και πρόωρη, επαγόμενη από οξειδωτικό στρες. Το γεγονός οτι η μείωση της έκφρασης της Geminin προηγήθηκε της εμφάνισης του γηρασμένου φαινοτύπου, μας ώθησε στην περαιτέρω διερεύνιση του λειτουργικού ρόλου της Geminin στην επαγωγή της κυτταρικής γήρανσης. Για το σκοπό αυτό, απορρυθμίσαμε τα επίπεδα έκφρασης της Geminin σε πρωτογενή φυσιολογικά κύτταρα ανθρώπου και ποντικού, αξιοποιώντας την τεχνολογία του RNAi και ρετροϊικά συστήματα υπερέκφρασης γονιδίων αντίστοιχα. Δείξαμε οτι η μείωση της έκφρασης της Geminin σε ανθρώπινους ινοβλάστες (χρησιμοποιώντας siRNAs αλλά και pSUPER πλασμιδιακούς φορείς αποσιώπησης γονιδίων που κατασκευάστηκαν ειδικά για την Geminin) επάγει αύξηση της κυτταρικής γήρανσης της καλλιέργειας. Επιπλέον, κύτταρα που στερούνταν της έκφρασης της Geminin ήταν πιο επιρρεπή σε γήρανση επαγόμενη από οξειδωτικό στρες, σε σχέση με τα κύτταρα-μάρτυρες. Ετεροζυγώτες για το γονίδιο της Geminin εμβρυικοί ινοβλάστες ποντικού εμφάνιζαν μεγαλύτερα ποσοστά κυτταρικής γήρανσης σε σχέση με τους αντίστοιχους ινοβλάστες αγρίου τύπου. Αντίθετα, αύξηση των επιπέδων της Geminin σε αγρίου τύπου εμβρυικούς ινοβλάστες ποντικού προκάλεσε μείωση της εμφανιζόμενης γήρανσης. Τέλος, η μείωση των επιπέδων έκφρασης του παράγοντα αδειοδότησης Cdt1 σε ανθρώπινα κύτταρα ήταν, επίσης, σε θέση να επάγει ισχυρό φαινότυπο κυτταρικής γήρανσης. Συνοψίζοντας, τα αποτελέσματα μας αναδεικνύουν την κρισιμότητα του ισοζυγίου Cdt1:Geminin στα κύτταρα, και προτείνουμε οτι η διατάραξη της ισορροπίας αυτής είναι ικανή να επάγει κυτταρική γήρανση, μέσω διαδικασιών όπως η υπεραδειοδότηση ή η υποαδειοδότηση της αντιγραφής του DNA. / Genome integrity relies on the strict alternation of S and M phases of the cell cycle, so that one and only round of DNA replication takes place per cell cycle. This is achieved through replication licensing, which involves the formation of a multi-protein complex, the pre-replicative complex, onto origins of replication. Cdt1 is a crucial component of this complex and Geminin, a small protein shown to tightly bind Cdt1, inhibits its licensing function from S to M phase, when licensing is illegitimate. Although previous experimental evidence shows that Cdt1 and Geminin are expressed in different phases of the cell cycle, physical interaction between these two proteins has been demonstrated in vitro as well as in vivo. The fate of a normal cell is not perpetual division. Cells may exit the mitotic cell cycle to enter quiescence, to terminally differentiate or to senesce. These “out-of-cycle-states” must be strictly regulated in order to establish and maintain the hierarchical organization of complex tissues in metazoa. Replication licensing has been proposed to coordinate cell-cycle exit and re-entry in vitro and in metazoan tissues. Cdt1 and Geminin down-regulation during exit to quiescence supports the idea that their expression correlates with cell proliferation. In contrast to other out-of-cycle states, little is known about the regulation of Cdt1 and Geminin expression during cellular senescence. Senescence refers to the irreversible resting state of cells grown for succeeding passages in culture, as a response to DNA damage caused by telomeres erosion. Other stimuli, such as oxidative or oncogenic stress, may force mitotically competent cells to respond similarly, a phenomenon termed as Stress Induced Premature Senescence (SIPS). The first part of this work focused on the study of the expression patterns of Cdt1 and Geminin during the unperturbed cell cycle of primary human fibroblasts and compared to that of tumor-derived cell lines. The cell cycle specific expression and the intracellular localization of both proteins, as assessed at a single-cell level using indirect immunofluorescence and a new monoclonal antibody against Geminin, appear similar in primary fibroblasts compared to the cancer cells examined. Cdt1 is strictly expressed in BrdU-negative cells, whereas Geminin starts accumulating after S phase onset. The two proteins are, therefore, not co-expressed at the ”time-window” of G1/S transition of the cell cycle. We showed that Cdt1 levels, but not those of Geminin, are mainly regulated in a proteasome-dependent way during normal cell cycle of human primary and cancer cells. The second part of this work focused on the investigation of Cdt1 and Geminin during cellular senescence and their possible role in the establishment of the senescence phenotype. To this end, primary human fibroblasts were maintained in culture for succeeding passages in order to induce them to undergo replicative senescence. Alternatively, an H202-induced senescence protocol was applied to force cells to undergo premature senescence (Stress-Induced Premature Senescence/SIPS). We show that, although Cdt1 and Geminin retain their nuclear localization and are correctly expressed during specific phases of the cell cycle during both replicative and Η202-induced premature senescence, their expression levels are down-regulated. In SIPS-experiments, Geminin down-regulation is an early event during the establishment of the senescent-phenotype, as assessed by senescence-associated β-Galactosidase and BrdU incorporation assays. This prompted us to further examine Geminin’s functional significance in the establishment of cellular senescence. To achieve this, we interfered with Geminin expression levels in human and mouse cells. Using RNA interference techniques, we were able to show that Geminin depletion from human cells is able to induce a senescent-phenotype in a fraction of the treated culture. Similarly, Geminin-depleted human cells were more susceptible to Η202-induced premature senescence, compared to control cells. Heterozygotes for Geminin mouse embryonic fibroblasts were more prone to senescence compared to their control counterparts. In contrast, when Geminin was over-expressed in control mouse embryonic fibroblasts cultures, senescent phenotype was reduced. Finally, a strong senescent-phenotype was induced when the licensing regulator, Cdt1, was silenced within human cells. Taken together, we conclude that Cdt1:Geminin balance within cells is crucial, and when disturbed, is able to promote a senescent phenotype, possibly through a mechanism that involves over- or under-licensing of DNA replication.
14

Επίδραση της βλάβης στο DNA στη χωροχρονική ρύθμιση των παραγόντων αδειοδότησης της αντιγραφής

Κωτσαντής, Παναγιώτης 30 May 2012 (has links)
Η αδειοδότηση της αντιγραφή του DNA συνίσταται στη συγκρότηση προαντιγραφικών συμπλόκων στη χρωματίνη, στα οποία μετέχουν οι πρωτεΐνες ORC, Cdt1, Cdc6 και MCM2-7. Η πρωτεΐνη Cdt1 αποικοδομείται μετά από βλάβη στο DNA και ενδέχεται να συνδέει το σύστημα αδειοδότησης και το σύστημα απόκρισης σε βλάβη στο DNA. Στη διδακτορική αυτή διατριβή μελετήθηκε η αλληλεπίδραση των συστημάτων αδειοδότησης και απόκρισης σε βλάβη στο DNA με μεθόδους λειτουργικής μικροσκοπίας σε ανθρώπινα κύτταρα, εστιάζοντας στους παράγοντες αδειοδότησης Cdt1 και MCM4. Ο παράγοντας Cdt1 μελετήθηκε μετά από καθολική και εντοπισμένη έκθεση ανθρώπινων κυττάρων σε υπεριώδη ακτινοβολία (UV). Δείχθηκε ότι ακτινοβόληση με UV οδηγεί στην αποικοδόμηση του παράγοντα Cdt1 σε διαφορετικές κυτταρικές σειρές. Ο χρόνος αποικοδόμησης της πρωτεΐνης Cdt1 όμως διαφοροποιείται σημαντικά ανάλογα με τον κυτταρικό τύπο και συγκεκριμένα παρουσιάζει καθυστέρηση στην κυτταρική σειρά καρκινώματος μαστού MCF7 σε σχέση με άλλες καρκινικές σειρές (HeLa, U2OS) και φυσιολογικούς ανθρώπινους ινοβλάστες. Μελέτη της πρωτεΐνης Cdt1 στο χώρο μετά από εντοπισμένη ακτινοβόληση μιας μικρής υποπεριοχής του πυρήνα έδειξε ότι η πρωτεΐνη Cdt1 συσσωρεύεται στην περιοχή της βλάβης από υπεριώδη ακτινοβολία πριν από την αποικοδόμηση της. Παράλληλα, παρατηρήθηκε συσσώρευση στην περιοχή της βλάβης από UV των πρωτεϊνών PCNA, Cdt2 (συστατικό του Cul4-DDB1Cdt2 συστήματος ουβικουιτίνωσης, που είναι υπεύθυνο για την αποικοδόμηση του παράγοντα Cdt1), καθώς και της πρωτεΐνης p21 που στοχεύεται από το ίδιο σύστημα. Πειράματα επαναφοράς φθορισμού σε ζωντανά κύτταρα (Fluorescence Recovery After Photobleaching, FRAP) έδειξαν ότι στις περιοχές εντοπισμένης ακτινοβόλησης με UV οι πρωτεΐνες Cdt1, Cdt2, PCNA και p21 εμφανίζουν τροποποιημένη κινητική συμπεριφορά. Πειράματα αποσιώπησης της έκφρασης της πρωτεΐνης Cdt1 ανέδειξαν έναν ανασταλτικό ρόλο για το Cdt1 στο μονοπάτι επιδιόρθωσης διπλών θραύσεων με ομόλογο ανασυνδυασμό κατά τη διάρκεια της G1 φάσης. Στο δεύτερο μέρος αυτής της εργασίας, εισάγαμε μια νέα in vivo μέθοδο μελέτης της αδειοδότησης που στηρίζεται στην εφαρμογή της FRAP τεχνικής σε MCF7 κύτταρα σταθερά διαμολυσμένα με την πρωτεΐνη MCM4 σημασμένη με την πράσινη φθορίζουσα πρωτεΐνη GFP (GFP-MCM4). Η μέθοδος αυτή επιτρέπει τη μελέτη της κινητικής συμπεριφοράς της πρωτεΐνης MCM4 σε ζωντανά κύτταρα και σε πραγματικό χρόνο. Δείχθηκε ότι το σύστημα αναπαράγει τη λειτουργία της ενδογενούς MCM4 πρωτεΐνης και μπορεί να διακρίνει επιτυχώς μεταξύ αδειοδοτημένης και μη κατάστασης. Ακολούθως, το σύστημα χρησιμοποιήθηκε για να μελετηθεί η επίδραση της υπεριώδους ακτινοβολίας στην αδειοδότηση της χρωματίνης για αντιγραφή. Διαπιστώθηκε ότι επίδραση με υπεριώδη ακτινοβολία οδηγεί σε μείωση του κλάσματος της MCM4 που είναι προσδεδεμένο στη χρωματίνη. Περαιτέρω μέλετη έδειξε ότι η μείωση αυτή παρουσιάζεται στη φάση G1 του κυτταρικού κύκλου και περιορίζεται στην περιοχή της βλάβης, δείχνοντας ότι αποτελεί εντοπισμένη απόκριση του κυττάρου στην ύπαρξη βλάβης. Συμπερασματικά, η συγκεκριμένη διδακτορική διατριβή ανέδειξε την αλληλεπίδραση των συστημάτων αδειοδότησης της αντιγραφής του DNA και της κυτταρικής απόκρισης σε βλάβη στο DNA και εισήγαγε μια νέα μέθοδο μελέτης της αδειοδότησης της αντιγραφής του DNA. Μελετήθηκαν οι παράγοντες του συστήματος αδειοδότησης Cdt1 και MCM4, οι οποίοι αποκρίνονται στη βλάβη στο DNA, με το Cdt1 να παίζει ρόλο στην επιλογή επιδιορθωτικού μηχανισμού μετά από πρόκληση βλάβης διπλών θραύσεων του DNA και την πρωτεΐνη MCM4 να εμφανίζει μειωμένη πρόσδεση στη χρωματίνη στην περιοχή της βλάβης μετά από ακτινοβόληση με UV. / Licensing DNA for replication involves the formation of pre-replicative complexes on chromatin, consisting of the proteins ORC, Cdt1, Cdc6 and MCM2-7. Cdt1 is degraded following DNA damage and this suggests a regulatory crosstalk between DNA licensing and DNA damage response (DDR) systems. Here the molecular interplay between these two systems was studied in human cell cultures. The kinetics of Cdt1 degradation in response to UV irradiation was shown to differ in different human cell lines, exhibiting a delay in MCF7 cells in comparison to HeLa, U2OS and human fibroblasts, which implies a difference in the DDR sensitivity of these cells. By studying the spatial regulation of Cdt1 in response to localized DNA damage, the accumulation of Cdt1 in UV irradiated sites prior to its degradation was recorded. Proteins participating in the degradation of Cdt1 through ubiquitin dependent proteolysis (PCNA and Cdt2), as well as protein p21 which is targeted by the same ubiquitin ligase following DNA damage, were also shown to accumulate at UV irradiated sites. Fluorescence Recovery After Photobleaching (FRAP) experiments showed that Cdt1, Cdt2, PCNA and p21 exhibit altered kinetics at UV irradiated sites. Silencing of Cdt1 expression revealed an inhibitory role of Cdt1 in the repair of double strand breaks through homologous recombination during the G1 phase of the cell cycle. In the second part of this thesis, we introduced an in vivo licensing assay based on FRAP in MCF7 cells stably expressing MCM4 tagged with the Green Fluorescent Protein (GFP). This assay allows the study of the kinetic behaviour of MCM4 in live cells and in real time. A plasmid expressing GFP-MCM4 was constructed and MCF7 cells stably expressing this plasmid were produced. The GFP-MCM4 cell line was further characterized to ensure a correct cell cycle profile, GFP-MCM4 levels, subcellular localization, interactions with other MCM proteins and binding to chromatin. FRAP experiments on the stable GFP-MCM4 cells verified that the assay could successfully distinguish between licensed and unlicensed state. Using this assay, the effect of UV irradiation on MCM4 kinetics was studied. UV irradiation led to a decrease in the fraction of MCM4 binding to chromatin. This effect was more profound in middle G1 phase and was restricted to the site of UV irradiation. In conclusion, this thesis addressed the interaction of DNA licensing and DNA damage response systems and introduced an in vivo DNA licensing assay. Licensing proteins Cdt1 and MCM4 were shown to respond to DNA damage, with Cdt1 affecting the double strand break repair choice pathway and MCM4 exhibiting reduced chromatin binding following UV irradiation.
15

ANALYSIS OF CHROMATIN ACCESSIBILITY OF THE HUMAN C-MYC REPLICATION ORIGIN

Danh, Tu Thien January 2015 (has links)
No description available.

Page generated in 0.039 seconds