• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 270
  • 53
  • 51
  • 32
  • 14
  • 6
  • 5
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 563
  • 118
  • 76
  • 59
  • 58
  • 57
  • 54
  • 47
  • 46
  • 46
  • 45
  • 43
  • 41
  • 40
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Étude des phénomènes interfaciaux à micro-échelle / Study on micro-scale interface phenomena

Wu, Yining 30 June 2015 (has links)
Cette thèse a étudié de façon systématique les processus de la rupture et de la coalescence impliquant une interface liquide-liquide (gouttelettes) ou gaz-liquide (bulles) en présence ou pas d’un champ magnétique dans des dispositifs microfluidiques, à l’aide d’une caméra rapide. Les mécanismes de la rupture d’une interface ferrofluide sous différents champs magnétiques ont été étudiés et comparés. On a constaté que la structure morphologique et la vitesse d’amincissement du cou peuvent être contrôlées activement par la force magnétique. Ainsi, le volume et la fréquence de formation de gouttelettes de ferrofluide peuvent être pilotés aisément. La rupture de l'interface liquide-liquide a généralement conduit à la formation de gouttelettes satellites avec sa taille proportionnelle au nombre capillaire de la phase continue. La coalescence des gouttelettes ont aussi été étudiée avec l’analyse de l'évolution du cou reliant deux gouttelettes. Il a été constaté que la formation du pont ou du cou liquide pouvait se produire dans la gamme de l'ordre de dizaines de micromètres entre les bords d'attaque sous champ magnétique. L'inertie d’origine d'attraction magnétique sur des gouttelettes de ferrofluide devenait la force motrice pour la coalescence lors de la première étape au détriment de la force capillaire / This thesis systematically investigates the breakup and coalescence processes of the involved droplet (bubble) interface under magnetic field or not in two-phase microfluidic flow, by using a high speed digital camera. The whole breakup processes of ferrofluid interface under different magnetic fields were investigated and compared. It was found that the morphological structure and necking velocity of the interface can be actively controlled by the magnetic force. Thus the volumes and the formation frequencies of ferrofluid droplets can be actively adjusted. The breakup of Liquid-Liquid interface usually leads to the formation of satellite droplet with its size proportional to the capillary number of the continuous phase. The coalescences of droplets were investigated. The evolution of the neck connecting two droplets was analyzed. It was found that the formation of liquid bridge or neck could occurs with a visible gap in the order of tens of micrometers between the leading edges under magnetic field and the inertia of the ferrofluid originating from the magnetic attraction fields becomes the driving force at the initial stage of coalescence instead of capillary force
182

QUALIDADE DA APLICAÇÃO EM TRIGO CONFORME REDUÇÕES DA TAXA APLICADA EM ASSOCIAÇÃO COM DIFERENTES PONTAS DE PULVERIZAÇÃO / SPRAY QUALITY ACCORDING REDUCTIONS ON SPRAY RATE COMBINED WITH DIFFERENT SPRAY NOZZLES IN WHEAT

Cezar, Heraldo Skrebsky 30 November 2013 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Nowadays there is a trend of become the operational of agrochemicals spray faster. Then, it may cause a direct impact on the spray quality of a given product, influencing even directly the effectiveness of it control. The present study investigated the feature of application as reduced spray rates in combination with different spray nozzles in two wheat cultivars. Field experiment was conducted in the winter of 2011 at Institute Phytus experimental field, on Itaara, central region of Rio Grande do Sul. It was test rates of 180, 140, 100 and 60 L/ha applied with the nozzles XR 11001, TT 11001 and TT 110015 on Fundacep 52 and Quartzo wheat cultivars, on three times: during the stem elongation, in head emission and in full flowering. For collection of drops of dye was used application on Contact paper cards, which were placed in exactly the same position and with the same format that the leaves if desired look. In each application was performed to characterize the quality as this: volume median diameter (VMD), SPAN (RA), number of droplets per square centimeters and percentage of coverage. Common to both cultivars, the DMV was conditioned only by the nozzles, being always smaller for XR 11001, and AR did not vary in any situation. The interaction between spray rates and spray nozzles was more decisive in droplet deposition on the cultivar Fundacep 52 than cultivar Quartzo, and on number of droplet per square centimeters than percentage of coverage. The nozzle XR 11001 tended to result in the greatest number of droplets per square centimeter, while the TT 11001 tended to generate the highest percentage of coverage. Reductions in spray rate normally produce more regular decreases in deposits when were used the TT nozzles regarding XR nozzle. / Em um cenário onde o aumento do ritmo operacional da aplicação de agroquímicos é uma das prioridades, podendo atrelar impactos diretos na qualidade da aplicação de determinado produto, influenciando, inclusive, diretamente a eficácia de controle deste, o presente trabalho objetivou estudar as características da aplicação conforme redução das taxas de aplicação em associação com diferentes pontas de pulverização em duas cultivares de trigo. Foi conduzido experimento de campo no inverno de 2011 em área experimental do Instituto Phytus, município de Itaara, região central do Rio Grande do Sul, testando as taxas de 180, 140, 100 e 60 L/ha aplicadas com as pontas XR 11001, TT 11001 e TT 110015 sobre as cultivares Fundacep 52 e Quartzo em três momentos. Para coleta das gotas foi utilizada aplicação de corante sobre cartões de papel Contact, os quais foram alocados exatamente na mesma posição e com mesmo formato das folhas que se desejou analisar. Em cada aplicação foram avaliados: área foliar, diâmetro mediano volumétrico (DMV), amplitude relativa (AR), número de gotas/cm2 e percentual de cobertura. O DMV foi condicionado apenas pelas pontas, sendo sempre menor para XR 11001, e a AR não apresentou variação em nenhuma situação. A interação entre taxas de aplicação e pontas de pulverização foi mais determinante na deposição de gotas sobre a cultivar Fundacep 52, em relação a cultivar Quartzo, e sobre número de gotas/cm2, comparativamente ao percentual de cobertura. A ponta XR 11001 tendeu a originar os maiores número de gotas/cm2, enquanto que a ponta XR 11001 tendeu a gerar os maiores percentuais de cobertura. Reduções na taxa de aplicação tenderam a gerar decréscimos mais regulares nos depósitos provenientes das pontas TT do que da ponta XR.
183

Droplet Microfluidics reverse transcription and PCR towards Single Cell and Exosome Analysis

Söderberg, Lovisa January 2017 (has links)
Miniaturization of biological analysis is a trend in the field of biotechnology aiming to increase resolution and sensitivity in biological assays. Decreasing the reaction volumes to analyze fewer analytes in each reaction vessel enables the detection of rare analytes in a vast background of more common variants. Droplet microfluidics is a high throughput technology for the generation, manipulation and analysis of picoliter scale water droplets an in immiscible oil. The capacity for high throughput processing of discrete reaction vessels makes droplet microfluidics a valuable tool for miniaturization of biological analysis. In the first paper, detection methods compatible with droplet microfluidics was expanded to include SiNR FET sensors. An integrated droplet microfluidics SiNR FET sensor device capable of extracting droplet contents, transferring a train of droplets to the SiNR to measure pH was implemented and tested. In paper II, a workflow was developed for scalable and target flexible multiplex droplet PCR using fluorescently color-coded beads for target detection. The workflow was verified for concurrent detection of two microorganisms infecting poultry. The detection panel was increased to multiple targets in one assay by the use of target specific capture probes on color-coded detection beads.   In paper III, droplet microfluidics has been successfully applied to single cell processing, demonstrated in paper III, where reverse transcription was performed on 65000 individually encapsulated mammalian cells. cDNA yield was approximately equivalent for reactions performed in droplets and in microliter scale. This workflow was further developed in paper IV to perform reverse transcription PCR in microfluidic droplets for detection of exosomes based on 18S RNA content. The identification of single exosomes based on RNA content can be further developed to detect specific RNA biomarkers for disease diagnostics. Droplet microfluidics has great potential for increasing resolution in biological analysis and to become a standard tool in disease diagnostics and clinical research. / <p>QC 20171024</p>
184

Origine(s) et Fonction(s) de Gènes de Résistance aux Métaux Issus de Métatranscriptomes Eucaryotes de Sols / Origin(s) and function(s) of metal resistance genes isolated from eukaryotic soil metatranscriptomes

Ziller, Antoine 31 March 2017 (has links)
Le sol est essentiel à toute société humaine notamment pour la production d'aliments. Son fonctionnement repose sur des réseaux d'interactions entre les éléments qui le composent et toute perturbation modifie ces réseaux. Les microorganismes eucaryotes représentent une composante importante de l'écosystème édaphique car ils sont impliqués dans des processus essentiels comme la régulation de populations de procaryotes. Mais paradoxalement, ils restent peu étudiés comparés aux bactéries notamment lorsqu'on s'intéresse aux cycles biogéochimiques autres que celui du carbone comme par exemple ceux des métaux. Suite à une pollution par des métaux, certains de ces microorganismes eucaryotes développent des mécanismes « de résistance » cellulaires. Dans ce contexte, le laboratoire d'accueil a isolé, directement à partir d'extraits d'ARN de sol, des gènes eucaryotes impliqués dans la résistance cellulaire au Cd. Ces nouveaux gènes forment une famille codant des protéines riches en cystéines dont les positions sont conservées au sein de cette famille. Mon projet de thèse a eu pour but de caractériser l'origine taxonomique et la fonction de cette famille de gènes. Dans un premier temps, la purification de cinq de ces protéines produites dans Escherichia coli et leurs caractérisations biochimiques par des méthodes spectrométriques ont permis de montrer que cette famille génique constitue une nouvelle famille de métallothionéines capables de chélater in vitro le Zn, le Cu et le Cd. Dans un second temps, une méthode de quantification par PCR quantitative de l'expression de ces gènes, extraits à partir de sol provenant de microcosmes, a été mise au point. Dans un troisième temps, nous avons tenté d'obtenir les régions génomiques bordant ces gènes environnementaux afin d'affilier les organismes qui les portent à un groupe taxonomique et d'analyser les régions promotrices de ces gènes par capture ciblée de gènes / Soil is essential to human societies, especially for food production. Its functioning relies on interaction networks sensitive to environmental alterations. Eukaryotic microorganisms are an important component of the soil ecosystem where they are involved in essential processes such as the regulation of prokaryotic populations. However, they remain poorly studied compared to bacteria, especially concerning their roles in biogeochemical cycles other than the carbon one such as metal cycles. In response to soil metal contamination, some of these eukaryotic microorganisms develop cellular "resistance" mechanisms. In this context, the host laboratory has previously isolated, directly from soils, eukaryotic genes able to confer Cd resistance. These genes form a family coding for cysteine-rich proteins whose cysteine positions are conserved within this sequences. My thesis project aimed at characterizing the function and taxonomic origin of this gene family. First, the purification of five of these proteins produced in Escherichia coli and their biochemical characterizations by spectrometric methods demonstrated that this gene family constitutes a new family of metallothioneins capable of chelating in vitro Zn, Cu and Cd. Some of these proteins are also able to confer Zn resistance when expressed in a sensitive yeast strain. In a second step, quantitative PCR methods for measuring expression levels of these genes in soil microcosms were developed. This will allow to evaluate the level of expression of these genes as a function of an increasing supply of exogenous metal. In a third step, we tried to obtain the genomic regions flanking these environmental genes in order to be able to associate the organisms from which they originate to a taxonomic group and to analyze the promoter regions of these genes using targeted capture
185

Auto-Ignition of Liquid n-Paraffin Fuels Mixtures as Single Droplets Using Continuous Thermodynamics

Sabourin, Shaun January 2011 (has links)
This thesis reports a model to predict the auto-ignition time of single droplets of n-paraffin fuel mixtures using the method of continuous thermodynamics. The model uses experimental data for pure fuels to fit rate parameters for a single-step global chemical reaction equation; from this, correlations for rate parameters as a function of species molecular mass are derived, which are integrated to produce a continuous thermodynamics expression for mixture reaction rate. Experiments were carried out using the suspended droplet-moving furnace technique. The model was then tested and compared to experimental data for three continuous mixtures with known compositions: one ranging from ¬n-octane to n-hexadecane, the second ranging from n-dodecane to n-eicosane, and the third being a combination of the first two mixtures to produce a “dumbbell” mixture. Discrete and continuous mixture models of the ASTM standard distillation test were compared to design the experimental mixtures and provide the distribution parameters of the continuous mixtures intended to simulate them. The results of calculations were found to agree very well with measured ignition times for the mixtures.
186

Droplet Heat and Mass Exchange with the Ambient During Dropwise Condensation and Freezing

Julian Castillo (9466352) 16 December 2020 (has links)
<div> <p>The distribution of local water vapor in the surrounding air has been shown to be the driving mechanism for several phase change phenomena during dropwise condensation and condensation frosting. This thesis uses reduced-order modeling approaches, which account for the effects of the vapor distribution to predict the droplet growth dynamics during dropwise condensation in systems of many droplets. High-fidelity modeling techniques are used to further probe and quantify the heat and mass transport mechanisms that govern the local interactions between a freezing droplet and its surrounding ambient, including neighboring droplets. The relative significance of these transport mechanisms in the propagation of frost are investigated. A reduced-order analytical method is first developed to calculate the condensation rate of each individual droplet within a group of droplets on a surface by resolving the vapor concentration field in the surrounding air. A point sink superposition method is used to account for the interaction between all droplets without requiring solution of the diffusion equation for a full three-dimensional domain. For a simplified scenario containing two neighboring condensing droplets, the rates of growth are studied as a function of the inter-droplet distance and the relative droplet size. Interactions between the pair of droplets are discussed in terms of changes in the vapor concentration field in the air domain around the droplets. For representative systems of condensing droplets on a surface, the total condensation rates predicted by the reduced-order model match numerical simulations to within 15%. The results show that assuming droplets grow as an equivalent film or in a completely isolated manner can severely overpredict condensation rates.</p> <p>The point superposition model is then used to predict the condensation rates measured during condensation experiments. The results indicate that it is critical to consider a large number of interacting droplets to accurately predict the condensation behavior. Even though the intensity of the interaction between droplets decreases sharply with their separation distance, droplets located relatively far away from a given droplet must be considered to accurately predict the condensation rate, due to the large aggregate effect of all such far away droplets. By considering an appropriate number of interacting droplets in a system, the point sink superposition method is able to predict experimental condensation rates to within 5%. The model was also capable of predicting the time-varying condensation rates of individual droplets tracked over time. These results confirm that diffusion-based models that neglect the interactions of droplets located far away, or approximate droplet growth as an equivalent film, overpredict condensation rates.</p> <p>In dropwise condensation from humid air, a full description of the interactions between droplets can be determined by solving the vapor concentration field while neglecting heat transfer across the droplets. In contrast, the latent heat released during condensation freezing processes cause droplet-to-ambient as well as droplet-to-droplet interactions via coupled heat and mas transfer processes that are not well understood, and their relative significance has not been quantified. As a first step in understanding these mechanisms, high-fidelity modeling of the solidification process, along with high-resolution infrared (IR) thermography measurements of the surface of a freezing droplet, are used to quantify the pathways for latent heat dissipation to the ambient surroundings of a droplet. The IR measurements are used to show that the crystallization dynamics are related to the size of the droplet, as the freezing front moves slower in larger droplets. Numerical simulations of the solidification process are performed using the IR temperature data at the contact line of the droplet as a boundary condition. These simulations, which have good agreement with experimentally measured freezing times, reveal that the heat transferred to the substrate through the base contact area of the droplet is best described by a time-dependent temperature boundary condition, contrary to the constant values of base temperature and rates of heat transfer assumed in previous numerical simulations reported in the literature. In further contrast to the highly simplified descriptions of the interaction between a droplet and its surrounding used in previous models, the model developed in the current work accounts for heat conduction, convection, and evaporative cooling at the droplet-air interface. The simulation results indicate that only a small fraction of heat is lost through the droplet-air interface via conduction and evaporative cooling. The heat transfer rate to the substrate of the droplet is shown to be at least one order of magnitude greater than the heat transferred to the ambient air.</p> <p>Subsequently, the droplet-to-droplet interactions via heat and mass exchange between a freezing droplet and a neighboring droplet, for which asymmetries are observed in the final shape of the frozen droplet, are investigated. Side-view infrared (IR) thermography measurements of the surface temperature for a pair of freezing droplets, along with three-dimensional numerical simulations of the solidification process, are used to quantify the intensity and nature of these interactions. Two droplet-to-droplet interaction mechanisms causing asymmetric freezing are identified: (1) non-uniform evaporative cooling on the surface of the freezing droplet caused by vapor starvation in the air between the droplets; and (2) a non-uniform thermal resistance at the contact area of the freezing droplet caused by the heat conduction within the neighboring droplet. The combined experimental and numerical results show that the size of the freezing droplet relative to its neighbor can significantly impact the intensity of the interaction between the droplets and, therefore, the degree of asymmetry. A small droplet freezing in the presence of a large droplet, which blocks vapor from freely diffusing to the surface of the small droplet, causes substantial asymmetry in the solidification process. The droplet-to-droplet interactions investigated in thesis provide insights into the role of heat dissipation in the evaporation of neighboring droplets and ice bridging, and open new avenues for extending this understanding to a system-level description for the propagation of frost.</p> </div> <br>
187

Skillnad i pilE genkopieantal och genuttryck mellan Neisseria meningitidis vid invasiv sjukdom eller bärarskap / Differences in pilE gene copy number and gene expression between Neisseria meningitidis in invasive disease or carriage

Al-Haseny, Sara January 2023 (has links)
Neisseria meningitidis är en bakterie som kan leda till invasiv sjukdom eller endast orsaka bärarskap i nasopharynx. Bakterien delas in i olika serogrupper och klonala komplex. Vissa av dessa grupper och klonala komplex förekommer endast hos invasiva isolat och andra bland bärare, vilket tyder på att det finns genetiska skillnader mellan invasiva och bärarisolat. I denna studie undersöktes genen pilE som kodar för PilE proteinet och ingår i bakteriens pili. Proteinet finns i två klasser, klass 1 och klass 2. Metoden som användes för att studera eventuella skillnader i förekomst och uttryck av pilE genen var digital droplet PCR (ddPCR). Både DNA och RNA kvantifierades med ddPCR för att undersöka antalet kopior av pilE genen (DNA) samt dess uttryck (RNA) mellan invasiva isolat och bärarisolat, mellan klass 1 pilE isolat och klass 2 samt fördelning av klasserna i isolattyperna. Principen för ddPCR är att dela ett prov till tiotusentals nanodroppar där individuella droppar genomgår PCR för en senare avläsning av flourescens från prober. Resultatet visade skillnad mellan bärarisolat och invasiva isolat där de invasiva isolaten visade mindre uttryck av pilE än bärarisolat. Klass 2 isolat hade signifikant färre genuttryck än klass 1 isolat och invasiva isolat visade klass 2 i högre utsträckning än bärarisolat. / Neisseria meningitidis is a bacterium that can cause invasive disease or carriage in the nasopharynx. The bacteria are divided into different serogroups and clonal complexes. Specific serogroups and clonal complexes are more frequent or are only found among invasive isolates or in carriage isolates. This study has investigated pilE, a gene that encodes the PilE protein located in the bacteria´s pilin and the protein is found in either class 1 or class 2. digital droplet PCR was used to investigate differences in presence and expression of the gene pilE. Both DNA and RNA was quantified to study the difference in copy number of the pilE gene (DNA) and its expression (RNA) between invasive isolates and carriage isolates but also between class 1 isolates and class 2 isolates. The distribution of classes between the isolate types was also investigated. The ddPCR method divides a sample into thousands of nanodroplets and a PCR reaction occurs in each droplet followed by droplet reading where fluoroscens from probes is measured. The difference that could be seen was that the invasive isolates expressed pilE in lower copies. Class 2 isolates had a significantly lower gene expression than class 1 isolates and invasive isolates expressed class 2 in a higher frequency.
188

Computational Design of a Vertical Wind Tunnel for Stable Droplet Levitation

Nawaz, Muneebullah 10 May 2023 (has links)
The efficient study of liquid droplets ranging from micrometers to a few centimeters by levitation is usually hindered by conventional design limitations. This is due to continuous droplet deformation in the test section. This research discusses the development of a robust design methodology for large droplet-stabilization (d > Capillary Number (Ca)) vertical wind tunnels. A modeling and simulation design environment has been developed that involves component sizing and integration at a central ANSYS-Fluent platform, followed by design optimization. The work inculcates numerical analysis of guide vanes to minimize the viscous losses and, subsequently, the wind tunnel dimensions. The process is followed by the design of honeycomb and wire screens and their analyses for a given geometry. A multi-variable design optimization problem has been optimized with response surface approximations. Statistical modeling of the expensive functions obtained from the solution of Navier-stokes equations has been accomplished in order to deal with non-linear and discontinuous behavior. Numerical optimization of the meta-model can help to find the most feasible wind tunnel design with computational efficiency. A non-conventional design with varying test area cross-sections has been introduced to investigate the droplet stability in constantly changing velocity profiles. Longitudinal as well as lateral velocity variations in the test section, creating velocity buckets with minimum turbulence intensity, has been introduced and analyzed using novel concept designs. The research highlights a systematic design methodology and an alternate configuration for liquid droplet wind tunnels while focusing on stable droplet levitation.
189

Theoretical And Experimental Investigation Of The Cascading Nature Of Pressure-Swirl Atomization

Choudhury, Pretam 01 January 2015 (has links)
Pressure swirl atomizers are commonly used in IC, aero-engines, and liquid propellant rocket combustion. Understanding the atomization process is important in order to enhance vaporization, mitigate soot formation, design of combustion chambers, and improve overall combustion efficiency. This work utilizes non-invasive techniques such as ultra -speed imaging, and Phase Doppler Particle Anemometry (PDPA) in order to investigate the cascade atomization process of pressure-swirl atomizers by examining swirling liquid film dynamics and the localized droplet characteristics of the resulting hollow cone spray. Specifically, experiments were conducted to examine these effects for three different nozzles with orifice diameters .3mm, .5mm, and .97mm. The ultra-speed imaging allowed for both visualization and interface tracking of the swirling conical film which emanated from each nozzle. Moreover, this allowed for the measurement of the radial fluctuations, film length, cone angle and maximum wavelength. Radial fluctuations are found to be maximum near the breakup or rupture of a swirling film. Film length decreases as Reynolds number increases. Cone angle increases until a critical Reynolds number is reached, beyond which it remains constant. A new approach to analyze the temporally unstable waves was developed and compared with the measured maximum wavelengths. The new approach incorporates the attenuation of a film thickness, as the radius of a conical film expands, with the classical dispersion relationship for an inviscid moving liquid film. This approach produces a new long wave solution which accurately matches the measured maximum wavelength swirling conical films generated from nozzles with the smallest orifice diameter. For the nozzle with the largest orifice diameter, the new long wave solution provides the upper bound limit, while the long wave solution for a constant film thickness provides the lower bound limit. These results indicate that temporal instability is the dominating mechanism which generates long Kelvin Helmholtz waves on the surface of a swirling liquid film. The PDPA was used to measure droplet size and velocity in both the near field and far field of the spray. For a constant Reynolds number, an increase in orifice diameter is shown to increase the overall diameter distribution of the spray. In addition, it was found that the probability of breakup, near the axis, decreases for the largest orifice diameter. This is in agreement with the cascading nature of atomization.
190

Agglomeration, Evaporation And Morphological Changes In Droplets With Nanosilica And Nanoalumina Suspensions In An Acoustic Field

Tijerino, Erick 01 January 2012 (has links)
Acoustic levitation permits the study of droplet dynamics without the effects of surface interactions present in other techniques such as pendant droplet methods. Despite the complexities of the interactions of the acoustic field with the suspended droplet, acoustic levitation provides distinct advantages of controlling morphology of droplets with nanosuspensions post precipitation. Droplet morphology is controlled by vaporization, deformation and agglomeration of nanoparticles, and therefore their respective timescales are important to control the final shape. The balance of forces acting on the droplet, such as the acoustic pressure and surface tension, determine the geometry of the levitated droplet. Thus, the morphology of the resultant structure can be controlled by manipulating the amplitude of the levitator and the fluid properties of the precursor nanosuspensions. The interface area in colloidal nanosuspensions is very large even at low particle concentrations. The effects of the presence of this interface have large influence in the properties of the solution even at low concentrations. This thesis focuses on the dynamics of particle agglomeration in acoustically levitated evaporating nanofluid droplets leading to shell structure formation. These experiments were performed by suspending 500µm droplets in a pressure node of a standing acoustic wave in a levitator and heating them using a carbon dioxide laser. These radiatively heated functional droplets exhibit three distinct stages, namely, pure evaporation, agglomeration and structure formation. The temporal history of the droplet surface temperature shows two inflection points. Morphology and final precipitation structures of levitated droplets are due to competing mechanisms of particle agglomeration, evaporation and shape deformation. This thesis provides iv a detailed analysis for each process and proposes two important timescales for evaporation and agglomeration that determine the final diameter of the structure formed. It is seen that both agglomeration and evaporation timescales are similar functions of acoustic amplitude (sound pressure level), droplet size, viscosity and density. However it is shown that while the agglomeration timescale decreases with initial particle concentration, the evaporation timescale shows the opposite trend. The final normalized diameter hence can be shown to be dependent solely on the ratio of agglomeration to evaporation timescales for all concentrations and acoustic amplitudes. The experiments were conducted with 10nm silica, 20nm silica, 20nm alumina and 50nm alumina solutions. The structures exhibit various aspect ratios (bowls, rings, spheroids) which depend on the ratio of the deformation timescale (tdef) and the agglomeration timescale (tg). For tdef

Page generated in 0.1336 seconds