• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 2
  • Tagged with
  • 9
  • 9
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantification of Damage in Selected Rocks due to Impact with Tungsten Carbide Bits

Nariseti, Chanakya 05 December 2013 (has links)
Impact induced dynamic cracks are produced with a Split Hopkinson Pressure Bar (SHPB) apparatus in two rocks (Kuru granite and Flamboro limestone) with impact velocities ranging from 8 to 12 m/s. Impact bit (tungsten carbide) diameters range from 8mm to 15mm. Dye impregnation combined with UV imaging, CAT scans and Optical scans were employed to study the resulting crack patterns. The resulting damage is quantified in terms of radial crack density on impact surface, crater, crushed zone and crack density with depth. In both rocks ‘total’ damage obtained is directly proportional (exponential) with bit diameter and impact velocity. The ‘total’ damage in Kuru granite is found to be greater than Flamboro limestone at all impact velocities; however, the crushed zone in the latter is found to consistently greater than the former. 2D simulations of dynamic fractures with AUTODYN have also been carried out showing good qualitative agreement with experimental results.
2

Quantification of Damage in Selected Rocks due to Impact with Tungsten Carbide Bits

Nariseti, Chanakya 05 December 2013 (has links)
Impact induced dynamic cracks are produced with a Split Hopkinson Pressure Bar (SHPB) apparatus in two rocks (Kuru granite and Flamboro limestone) with impact velocities ranging from 8 to 12 m/s. Impact bit (tungsten carbide) diameters range from 8mm to 15mm. Dye impregnation combined with UV imaging, CAT scans and Optical scans were employed to study the resulting crack patterns. The resulting damage is quantified in terms of radial crack density on impact surface, crater, crushed zone and crack density with depth. In both rocks ‘total’ damage obtained is directly proportional (exponential) with bit diameter and impact velocity. The ‘total’ damage in Kuru granite is found to be greater than Flamboro limestone at all impact velocities; however, the crushed zone in the latter is found to consistently greater than the former. 2D simulations of dynamic fractures with AUTODYN have also been carried out showing good qualitative agreement with experimental results.
3

Hybrid Damage Identification Based on Wavelet Transform and Finite Element Model Updating

Lee, Soon Gie 01 May 2012 (has links)
No description available.
4

A Nordic Perspective on Data Availability for Quantification of Losses due to Natural Hazards

Grahn, Tonje January 2016 (has links)
Natural hazards cause enormous amounts of damage worldwide every year. Since 1994 more than 1.35 billion people have lost their lives and more than 116 million homes have been damaged. Understanding of disaster risk implies knowledge about vulnerability, capacity, exposure of persons and assets, hazard characteristics and the environment. Quantitative damage assessments are a fundamental part of disaster risk management. There are, however, substantial challenges when quantifying damage which depends on the diversity of hazards and the fact that one hazardous event can negatively impact a society in multiple ways. The overall aim of the thesis is to analyze the relationship between climate-related natural hazards and subsequent damage for the purpose of improving the prerequisite for quantitative risk assessments in the future. The thesis concentrates on two specific types of consequences due to two types of hazards, 1) damage to buildings caused by lake floods, and 2) loss of lives caused by quick clay landslides.  Several causal relationships were established between risk factors and the extent of damages. Lake water levels increased the probability of structural building damage. Private damage reducing measures decreased the probability of structural building damage. Extent of damage decreased with distance to waterfront but increased with longer flood duration while prewar houses suffered lower flood damage compared to others. Concerning landslides, the number of fatalities increased when the number of humans in the exposed population increased. The main challenges to further damage estimation are data scarcity, insufficient detail level and the fact that the data are rarely systematically collected for scientific purposes. More efforts are needed to create structured, homogeneous and detailed damage databases with corresponding risk factors in order to further develop quantitative damage assessment of natural hazards in a Nordic perspective. / Naturolyckor orsakar enorma mängder skador över hela världen varje år. Under åren 1994-2013 förlorade mer än 1,35 miljoner människor sina liv och mer än 116 miljoner hem skadades. Förståelse av risk för naturolyckor innebär kunskap om sårbarhet, kapacitet, exponering av personer och tillgångar, hot och miljö. Kvantitativa skadebedömningar, som är en viktig del av riskbedömningar, omfattas av stora utmaningar som grundar sig i hotens mångfaldighet och det faktum att en naturolycka kan påverka ett samhälle negativt på många olika sätt. Det övergripande syftet med avhandlingen är att analysera förhållandet mellan naturkatastrofer och potentiellt påföljande skador i syfte att förbättra förutsättningarna för kvantitativa riskbedömningar i framtiden. Avhandlingen koncentrerar sig på två typer av naturolyckor med specifika konsekvenser, 1) skador på byggnader till följd av sjö-översvämningar, och 2) förlust av liv orsakat av lerskred. Flera orsakssamband mellan riskfaktorer och omfattning av skador har identifierats. Sjöarnas vattennivåer ökade sannolikheten att drabbas av strukturell byggnadsskada, samtidigt som privat initierade åtgärder minskande sannolikheten.. När avstånd mellan sjö och byggnad ökade minskade omfattningen av översvämningsskador, men ökade ju längre sjööversvämningen varade. Hus byggda före 1940 fick mindre skador jämfört med andra hus. Andelen dödsfall i samband med skred i kvicklera ökade när antal människor i den exponerade befolkningen ökade. Den största utmaningen i att förbättra dagens kvantitativa skadebedömningar är den rådande databristen vad gäller förluster och tillhörande riskfaktorer. Denna brist beror på otillgänglig skadedata, bristande detaljnivå på skadedata och tillhörande risk faktorer, och att uppgifterna sällan samlas systematiskt i syfte att studera kausalitet. / The overall aim of the thesis is to analyze the relationship between climate-related natural hazards and subsequent damage for the purpose of improving the prerequisite for quantitative risk assessments in the future. The thesis concentrates on two specific types of hazards with specific types of consequences, 1) damage to buildings caused by lake floods, and 2) loss of lives caused by quick clay landslides.  Several causal relationships were established between risk factors and the extent of damages. Lake water levels increased the probability of structural building damage. Private damage reducing measures decreased the probability of structural building damage. Extent of damage decreased with distance to waterfront but increased with longer flood duration while prewar houses suffered lower flood damage compared to others. Concerning landslides, the number of fatalities increased when the number of humans in the exposed population increased. The main challenges to further damage estimation are data scarcity, insufficient detail level and the fact that the data are rarely systematically collected for scientific purposes.
5

Ensaios sobre danos de cartel: metodologias de cálculo do sobrepreço, efeito repasse (pass-on) e multa ótima / Essays on cartel damage: methodologies on price overcharge, pass-on effect and optimal fines

Fabiana Ferreira de Mello Tito 15 June 2018 (has links)
A presente pesquisa objetiva analisar os principais aspectos relacionados ao tema de danos em cartel: sobrepreço, efeito repasse (pass-on) e multa ótima. Com o aumento de políticas de combate a cartéis, pelo sério caráter lesivo à concorrência e à sociedade, intensificaram-se os esforços para estimar o impacto econômico no bem-estar provocado por tais condutas. O estudo confirma que a principal medida de dano econômico do cartel é o sobrepreço, ainda que os demais fatores, como o repasse (pass-on) e o efeito perda de vendas também devam ser considerados na mensuração do dano privado. Metodologias para o cálculo destes três componentes foram mapeadas, revelando que as técnicas disponíveis não são complexas, até fáceis de serem aplicadas, quando se tem amplo acesso a dados. Como avaliação empírica, apresenta-se o caso inédito do cartel dos compressores, sobre danos causados por tão nociva prática, comprovando-se que os valores de sobrepreço calculado estão em linha com a literatura. Por fim, a tese apresenta o histórico de multas impostas por autoridades, em casos de cartel, em diversas jurisdições, e questiona a efetividade dos montantes aplicados para devida dissuasão ou restabelecimento do bem-estar à sociedade. Análise de casos condenados pelo CADE recentemente mostram que as multas não têm sido suficientes para impor dissuasão, recomendando-se o uso de parâmetros que tragam racionalidade econômica e desestimulem as práticas anticompetitivas. / The present research had the aim of analyzing the main aspects related to cartel damages: overcharge, pass-on effect and optimal fine. With the growth of anti-cartel enforcement efforts and given the detrimental nature of conduct, efforts to estimate the economic impact on the welfare have increased. The study shows that the main measure of economic damage of the cartel is the overcharge, although other factors such as the pass-on effect and the output effect cannot be neglected in the calculation of private damage. Methodologies for these three components were mapped, revealing that the available techniques are not complex and even easy to apply when data is available. An empirical evaluation is presented using an unprecedented in the Brazilian market \"compressors cartel case\", showing an overcharge in line with the literature. Finally, the thesis presents the history of fines imposed by authorities in cartel cases in several jurisdictions and questions the effectiveness of the amounts applied for a proper deterrence or restoration of welfare to society. Case studies condemned by CADE recently show that fines have not been sufficient to impose deterrence, recommending the use of parameters that bring economic rationality and discourage anticompetitive practices.
6

Ensaios sobre danos de cartel: metodologias de cálculo do sobrepreço, efeito repasse (pass-on) e multa ótima / Essays on cartel damage: methodologies on price overcharge, pass-on effect and optimal fines

Tito, Fabiana Ferreira de Mello 15 June 2018 (has links)
A presente pesquisa objetiva analisar os principais aspectos relacionados ao tema de danos em cartel: sobrepreço, efeito repasse (pass-on) e multa ótima. Com o aumento de políticas de combate a cartéis, pelo sério caráter lesivo à concorrência e à sociedade, intensificaram-se os esforços para estimar o impacto econômico no bem-estar provocado por tais condutas. O estudo confirma que a principal medida de dano econômico do cartel é o sobrepreço, ainda que os demais fatores, como o repasse (pass-on) e o efeito perda de vendas também devam ser considerados na mensuração do dano privado. Metodologias para o cálculo destes três componentes foram mapeadas, revelando que as técnicas disponíveis não são complexas, até fáceis de serem aplicadas, quando se tem amplo acesso a dados. Como avaliação empírica, apresenta-se o caso inédito do cartel dos compressores, sobre danos causados por tão nociva prática, comprovando-se que os valores de sobrepreço calculado estão em linha com a literatura. Por fim, a tese apresenta o histórico de multas impostas por autoridades, em casos de cartel, em diversas jurisdições, e questiona a efetividade dos montantes aplicados para devida dissuasão ou restabelecimento do bem-estar à sociedade. Análise de casos condenados pelo CADE recentemente mostram que as multas não têm sido suficientes para impor dissuasão, recomendando-se o uso de parâmetros que tragam racionalidade econômica e desestimulem as práticas anticompetitivas. / The present research had the aim of analyzing the main aspects related to cartel damages: overcharge, pass-on effect and optimal fine. With the growth of anti-cartel enforcement efforts and given the detrimental nature of conduct, efforts to estimate the economic impact on the welfare have increased. The study shows that the main measure of economic damage of the cartel is the overcharge, although other factors such as the pass-on effect and the output effect cannot be neglected in the calculation of private damage. Methodologies for these three components were mapped, revealing that the available techniques are not complex and even easy to apply when data is available. An empirical evaluation is presented using an unprecedented in the Brazilian market \"compressors cartel case\", showing an overcharge in line with the literature. Finally, the thesis presents the history of fines imposed by authorities in cartel cases in several jurisdictions and questions the effectiveness of the amounts applied for a proper deterrence or restoration of welfare to society. Case studies condemned by CADE recently show that fines have not been sufficient to impose deterrence, recommending the use of parameters that bring economic rationality and discourage anticompetitive practices.
7

Surface and subsurface damage quantification using multi-device robotics-based sensor system and other non-destructive testing techniques

Rathod, Harsh 19 September 2019 (has links)
North American civil infrastructures are aging. According to recent (2016) Canadian infrastructure report card, 33% of the Canadian municipal infrastructures are either in fair or below fair condition. The current deficit of replacing fair and poor municipal bridges (covers 26% of bridges) is 13 billion dollars. According to the latest report (2017) by American Society of Civil Engineers, the entire American infrastructure have been given a D+ condition rating. This includes some of the structural elements of infrastructures that pose a significant risk and there is an urgent need for frequent and effective inspection to ensure the safety of people. Visual inspection is a commonly used technique to detect and identify surface defects in bridge structures as it has been considered the most feasible method for decades. However, this currently used methodology is inadequate and unreliable as it is highly dependent on subjective human judgment. This labor-intensive approach for inspection requires huge investment in terms of an arrangement of temporary scaffoldings/permanent platforms, ladders, snooper trucks, and sometimes helicopters. To address these issues associated with visual inspection, the completed research suggests three innovative methods; 1) Combined use of Fuzzy logic and Image Processing Algorithm to quantify surface defects, 2) Unmanned Aerial Vehicle (UAV)-assisted American Association of State Highway and Transportation Officials (AASHTO) guideline-based damage assessment technique, and 3) Patent-pending multi-device robotics-based sensor data acquisition system for mapping and assessing defects in civil structures. To detect and quantify subsurface defects such as voids and delamination using a UAV system, another patent-pending UAV-based acoustic method is developed. It is a novel inspection apparatus that comprises of an acoustic signal generator coupled to a UAV. The acoustic signal generator includes a hammer to produce an acoustic signal in a structure using a UAV. An outcome of this innovative research is the development of a model to refine multiple commercially available NDT techniques’ data to detect and quantify subsurface defects. To achieve this, a total of nine 1800 mm × 460 mm reinforced concrete slabs with varying thicknesses of 100 mm, 150 mm and 200 mm are prepared. These slabs are designed to have artificially simulated defects like voids, debonding, honeycombing, and corrosion. To determine the performance of five NDT techniques, more than 300 data points are considered for each test. The experimental research shows that utilizing multiple techniques on a single structure to evaluate the defects, significantly lowers error and increases accuracy compared to that from a standalone test. To visualize the NDT data, two-dimensional NDT data maps are developed. This work presents an innovative method to interpret NDT data correctly as it compares the individual data points of slabs with no defects to slabs with simulated damage. For the refinement of NDT data, significance factor and logical sequential determination factor are proposed. / Graduate / 2020-09-06
8

Assessment of structural damage using operational time responses

Ngwangwa, Harry Magadhlela 31 January 2006 (has links)
The problem of vibration induced structural faults has been a real one in engineering over the years. If left unchecked it has led to the unexpected failures of so many structures. Needless to say, this has caused both economic and human life losses. Therefore for over forty years, structural damage identification has been one of the important research areas for engineers. There has been a thrust to develop global structural damage identification techniques to complement and/or supplement the long-practised local experimental techniques. In that respect, studies have shown that vibration-based techniques prove to be more potent. Most of the existing vibration-based techniques monitor changes in modal properties like natural frequencies, damping factors and mode shapes of the structural system to infer the presence of structural damage. Literature also reports other techniques which monitor changes in other vibration quantities like the frequency response functions, transmissibility functions and time-domain responses. However, none of these techniques provide a complete identification of structural damage. This study presents a damage detection technique based on operational response monitoring, which can identify all the four levels of structural damage and be implemented as a continuous structural health monitoring technique. The technique is based on monitoring changes in internal data variability measured by a test statistic <font face="symbol">c</font>2Ovalue. Structural normality is assumed when the <font face="symbol">c</font>2Om value calculated from a fresh set of measured data is within the limits prescribed by a threshold <font face="symbol">c</font>2OTH value . On the other hand, abnormality is assumed when this threshold value has been exceeded. The quantity of damage is determined by matching the <font face="symbol">c</font>2Om value with the <font face="symbol">c</font>2Op values predicted using a benchmark finite element model. The use of <font face="symbol">c</font>2O values is noted to provide better sensitivity to structural damage than the natural frequency shift technique. The analysis carried out on a numerical study showed that the sensitivity of the proposed technique ranged from three to thousand times as much as the sensitivity of the natural frequencies. The results from a laboratory structure showed that accurate estimates of damage quantity and remaining service life could be achieved for crack lengths of less than 0.55 the structural thickness. This was due to the fact that linear elastic fracture mechanics theory was applicable up to this value. Therefore, the study achieved its main objective of identifying all four levels of structural damage using operational response changes. / Dissertation (MSc (Mechanics))--University of Pretoria, 2007. / Mechanical and Aeronautical Engineering / unrestricted
9

Advanced functional and sequential statistical time series methods for damage diagnosis in mechanical structures / Εξελιγμένες συναρτησιακές και επαναληπτικές στατιστικές μέθοδοι χρονοσειρών για την διάγνωση βλαβών σε μηχανολογικές κατασκευές

Κοψαυτόπουλος, Φώτης 01 February 2013 (has links)
The past 30 years have witnessed major developments in vibration based damage detection and identification, also collectively referred to as damage diagnosis. Moreover, the past 10 years have seen a rapid increase in the amount of research related to Structural Health Monitoring (SHM) as quantified by the significant escalation in papers published on this subject. Thus, the increased interest in this engineering field and its associated potential constitute the main motive for this thesis. The goal of the thesis is the development and introduction of novel advanced functional and sequential statistical time series methods for vibration based damage diagnosis and SHM. After the introduction of the first chapter, Chapter II provides an experimental assessment and comparison of vibration based statistical time series methods for Structural Health Monitoring (SHM) via their application on a lightweight aluminum truss structure and a laboratory scale aircraft skeleton structure. A concise overview of the main non-parametric and parametric methods is presented, including response-only and excitation-response schemes. Damage detection and identification are based on univariate (scalar) versions of the methods, while both scalar (univariate) and vector (multivariate) schemes are considered. The methods' effectiveness for both damage detection and identification is assessed via various test cases corresponding to different damage scenarios, multiple experiments and various sensor locations on the considered structures. The results of the chapter confirm the high potential and effectiveness of vibration based statistical time series methods for SHM. Chapter III investigates the identification of stochastic systems under multiple operating conditions via Vector-dependent Functionally Pooled (VFP) models. In many applications a system operates under a variety of operating conditions (for instance operating temperature, humidity, damage location, damage magnitude and so on) which affect its dynamics, with each condition kept constant for a single commission cycle. Typical examples include mechanical structures operating under different environmental conditions, aircrafts under different flight conditions (altitude, velocity etc.), structures under different structural health states (various damage locations and magnitudes). In this way, damage location and magnitude may be considered as parameters that affect the operating conditions and as a result the structural dynamics. This chapter's work is based on the novel Functional Pooling (FP) framework, which has been recently introduced by the Stochastic Mechanical Systems \& Automation (SMSA) group of the Mechanical Engineering and Aeronautics Department of University of Patras. The main characteristic of Functionally Pooled (FP) models is that their model parameters and innovations sequence depend functionally on the operating parameters, and are projected on appropriate functional subspaces spanned by mutually independent basis functions. Thus, the fourth chapter of the thesis addresses the problem of identifying a globally valid and parsimonious stochastic system model based on input-output data records obtained under a sample of operating conditions characterized by more than one parameters. Hence, models that include a vector characterization of the operating condition are postulated. The problem is tackled within the novel FP framework that postulates proper global discrete-time linear time series models of the ARX and ARMAX types, data pooling techniques, and statistical parameter estimation. Corresponding Vector-dependent Functionally Pooled (VFP) ARX and ARMAX models are postulated, and proper estimators of the Least Squares (LS), Maximum Likelihood (ML), and Prediction Error (PE) types are developed. Model structure estimation is achieved via customary criteria (Bayesian Information Criterion) and a novel Genetic Algorithm (GA) based procedure. The strong consistency of the VFP-ARX least squares and maximum likelihood estimators is established, while the effectiveness of the complete estimation and identification method is demonstrated via two Monte Carlo studies. Based on the postulated VFP parametrization a vibration based statistical time series method that is capable of effective damage detection, precise localization, and magnitude estimation within a unified stochastic framework is introduced in Chapter IV. The method constitutes an important generalization of the recently introduced Functional Model Based Method (FMBM) in that it allows, for the first time in the statistical time series methods context, for complete and precise damage localization on continuous structural topologies. More precisely, the proposed method can accurately localize damage anywhere on properly defined continuous topologies on the structure, instead of pre-defined specific locations. Estimator uncertainties are taken into account, and uncertainty ellipsoids are provided for the damage location and magnitude. To achieve its goal, the method is based on the extended class of Vector-dependent Functionally Pooled (VFP) models, which are characterized by parameters that depend on both damage magnitude and location, as well as on proper statistical estimation and decision making schemes. The method is validated and its effectiveness is experimentally assessed via its application to damage detection, precise localization, and magnitude estimation on a prototype GARTEUR-type laboratory scale aircraft skeleton structure. The damage scenarios considered consist of varying size small masses attached to various continuous topologies on the structure. The method is shown to achieve effective damage detection, precise localization, and magnitude estimation based on even a single pair of measured excitation-response signals. Chapter V presents the introduction and experimental assessment of a sequential statistical time series method for vibration based SHM capable of achieving effective, robust and early damage detection, identification and quantification under uncertainties. The method is based on a combination of binary and multihypothesis versions of the statistically optimal Sequential Probability Ratio Test (SPRT), which employs the residual sequences obtained through a stochastic time series model of the healthy structure. In this work the full list of properties and capabilities of the SPRT are for the first time presented and explored in the context of vibration based damage detection, identification and quantification. The method is shown to achieve effective and robust damage detection, identification and quantification based on predetermined statistical hypothesis sampling plans, which are both analytically and experimentally compared and assessed. The method's performance is determined a priori via the use of the analytical expressions of the Operating Characteristic (OC) and Average Sample Number (ASN) functions in combination with baseline data records, while it requires on average a minimum number of samples in order to reach a decision compared to most powerful Fixed Sample Size (FSS) tests. The effectiveness of the proposed method is validated and experimentally assessed via its application on a lightweight aluminum truss structure, while the obtained results for three distinct vibration measurement positions prove the method's ability to operate based even on a single pair of measured excitation-response signals. Finally, Chapter VI contains the concluding remarks and future perspectives of the thesis. / Κατά τη διάρκεια των τελευταίων 30 ετών έχει σημειωθεί σημαντική ανάπτυξη στο πεδίο της ανίχνευσης και αναγνώρισης βλαβών, το οποίο αναφέρεται συνολικά και σαν διάγνωση βλαβών. Επίσης, κατά την τελευταία δεκαετία έχει σημειωθεί σημαντική πρόοδος στον τομέα της παρακολούθησης της υγείας (δομικής ακεραιότητας) κατασκευών. Στόχος αυτής της διατριβής είναι η ανάπτυξη εξελιγμένων συναρτησιακών και επαναληπτικών μεθόδων χρονοσειρών για τη διάγνωση βλαβών και την παρακολούθηση της υγείας κατασκευών υπό ταλάντωση. Αρχικά γίνεται η πειραματική αποτίμηση και κριτική σύγκριση των σημαντικότερων στατιστικών μεθόδων χρονοσειρών επί τη βάσει της εφαρμογής τους σε πρότυπες εργαστηριακές κατασκευές. Εφαρμόζονται μη-παραμετρικές και παραμετρικές μέθοδοι που βασίζονται σε ταλαντωτικά σήματα διέγερσης και απόκρισης των κατασκευών. Στη συνέχεια αναπτύσσονται στοχαστικά συναρτησιακά μοντέλα για την στοχαστική αναγνώριση κατασκευών υπό πολλαπλές συνθήκες λειτουργίας. Τα μοντέλα αυτά χρησιμοποιούνται για την αναπαράσταση κατασκευών σε διάφορες καταστάσεις βλάβης (θέση και μέγεθος βλάβης), ώστε να είναι δυνατή η συνολική μοντελοποίσή τους για όλες τις συνθήκες λειτουργίας. Τα μοντέλα αυτά αποτελούν τη βάση στην οποία αναπτύσσεται μια συναρτησιακή μέθοδος η οποία είναι ικανή να αντιμετωπίσει συνολικά και ενιαία το πρόβλημα της ανίχνευσης, εντοπισμού και εκτίμησης βλαβών σε κατασκευές. Η πειραματική αποτίμηση της μεθόδου γίνεται με πολλαπλά πειράματα σε εργαστηριακό σκελετό αεροσκάφους. Στο τελευταίο κεφάλαιο της διατριβής προτείνεται μια καινοτόμος στατιστική επαναληπτική μέθοδο για την παρακολούθηση της υγείας κατασκευών. Η μέθοδος κρίνεται αποτελεσματική υπό καθεστώς λειτουργικών αβεβαιοτήτων, καθώς χρησιμοποιεί επαναληπτικά και στατιστικά τεστ πολλαπλών υποθέσεων. Η αποτίμηση της μεθόδου γίνεται με πολλαπλά εργαστηριακά πειράματα, ενώ η μέθοδος κρίνεται ικανή να λειτουργήσει με τη χρήση ενός ζεύγους ταλαντωτικών σημάτων διέγερσης-απόκρισης.

Page generated in 0.1091 seconds