• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 160
  • 102
  • 73
  • 25
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 434
  • 434
  • 94
  • 58
  • 48
  • 46
  • 45
  • 42
  • 42
  • 41
  • 38
  • 38
  • 34
  • 30
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

AN IP-BASED RECORDING SYSTEM

Roach, John, Hildin, John 10 1900 (has links)
ITC/USA 2006 Conference Proceedings / The Forty-Second Annual International Telemetering Conference and Technical Exhibition / October 23-26, 2006 / Town and Country Resort & Convention Center, San Diego, California / Traditionally, acquired instrumentation data on a non-destructive test article is recorded to a nonvolatile memory recorder. The data acquisition system usually samples and formats its inputs before transmitting the data to the recorder (also known in this paper as a data sink) via a PCM serial data stream (i.e., clock and data). In a network-based data acquisition architecture, the inclusion of an IP-based recorder adds a new dimension to the data acquisition process. Any IP network inherently allows for the bi-directional exchange of data. In this environment, the IPbased recorder can be treated as both a data sink for parameter recording and a data source for parameter extraction, data rate statistics, and recorder status reporting. The network model recasts the data recorder’s function as a file server to which multiple clients could be simultaneously requesting services. Those clients that represent the data acquisition nodes are requesting storage of their acquired parameters. Clients, such as transmitters or test engineers, are requesting access to archived data or status information for further processing. This paper presents the advantages of using an IP-based recorder in a network-based data acquisition system. The availability of an IP interface along with the intelligence built into the recorder expands its capabilities beyond that of a conventional PCM recorder. These capabilities include real-time health monitoring, support for the Simple Network Management Protocol (SNMP), data mining, reporting of real-time performance and network statistics.
62

AIRBORNE NETWORK SWITCH WITH IEEE-1588 SUPPORT

Hildin, John, Arias, Sergio 10 1900 (has links)
ITC/USA 2006 Conference Proceedings / The Forty-Second Annual International Telemetering Conference and Technical Exhibition / October 23-26, 2006 / Town and Country Resort & Convention Center, San Diego, California / Today’s data acquisition systems are typically comprised of data collectors connected to multiplexers via serial, point-to-point links. Data flows upstream from the sensors or avionics buses to the data acquisition units, to the multiplexer and finally to the recorder or telemetry transmitter. In a networked data acquisition system, data is transported through the network “cloud”. At the core of the network “cloud” is the network switch. The switch is responsible for distributing and directing data within the network. Network switches are commonplace in the commercial realm. Many businesses today could not function without them. A network-based data acquisition system, however, places additional burdens on the network switch. As in a commercial network, the switch in a data acquisition system must be able to distribute data packets within the network. In addition, it must be able to perform in a harsh environment, occupy a minimal amount of space, operate with limited or no external cooling, be configurable, and deal with the distribution of time information. This paper describes the required features of a ruggedized network switch and the implementation challenges facing its design. As a core component of a network-based data acquisition system, an ideal switch must be capable of operating in a large number of configurations, transporting and aggregating data between data sources and data sinks, with a mixture of devices operating at rates ranging from a few thousand bits per second to several gigabits per second, over twisted pair or fiber optic links. To ensure time coherency, the switch must also facilitate a time distribution mechanism, e.g., IEEE-1588 Precision Time Protocol (PTP). The gigabit switch described here uses the PTP to implement an end-to-end clock synchronization, for distributed acquisition nodes, to within 300 nanoseconds.
63

Wireless Sensor System for Airborne Applications

Berdugo, Albert, Grossman, Hy, Schofield, Nicole, Musteric, Steven 10 1900 (has links)
ITC/USA 2006 Conference Proceedings / The Forty-Second Annual International Telemetering Conference and Technical Exhibition / October 23-26, 2006 / Town and Country Resort & Convention Center, San Diego, California / Adding an instrumentation / telemetry system to a test vehicle has historically required an intrusive installation for wiring and powering all elements of the system from the sensor to the telemetry transmitter. In some applications there is need for a flexible and modular instrumentation and telemetry system that can be installed with minimal intrusiveness on an aircraft without the need for permanent modifications. Such an application may benefit from the use of a miniaturized, inexpensive network of wireless sensors. This network will communicate its data to a central unit installed within the aircraft. This paper describes recent efforts associated with the Advanced Subminiature Telemetry System (ASMT) Initial Test Capability Project. It discusses the challenges in developing a wireless sensor network system for use in an airborne environment. These include selection of frequencies, COTS wireless devices, batteries, system synchronization, data bandwidth calculations, and mechanical structure for external installation. The paper will also describe the wireless network architecture as well as the architecture of the wireless sensor and the central control unit.
64

IEEE1588 – A solution for synchronization of networked data acquisition systems?

Corry, Diarmuid 10 1900 (has links)
ITC/USA 2006 Conference Proceedings / The Forty-Second Annual International Telemetering Conference and Technical Exhibition / October 23-26, 2006 / Town and Country Resort & Convention Center, San Diego, California / One of the problems for manufacturers and users of flight test data acquisition equipment, is to guarantee synchronization between multiple units acquiring data on the vehicle. Past solutions have involved proprietary interconnects and multiple wire installations increasing weight and complexity and reducing inter-operation of units. This problem has become particularly important given the trend towards commercial busses, especially Ethernet, as a system interconnect. The IEEE1588 standard offers a way to transmitting time accurately over Ethernet. This paper discusses the standard, how it might be implemented, and examines the issues involved in adopting this standard for flight test data acquisition. A particular implementation that results in a synchronized four-wire Ethernet based distributed data acquisition system is discussed in section 3.
65

A SYSTEM APPROACH TO A NETWORK CENTRIC AIRBORNE DATA ACQUISITION SYSTEM

Berdugo, Albert, Hildin, John 10 1900 (has links)
ITC/USA 2006 Conference Proceedings / The Forty-Second Annual International Telemetering Conference and Technical Exhibition / October 23-26, 2006 / Town and Country Resort & Convention Center, San Diego, California / Airborne data acquisition systems have changed very little over the years. Their growth has primarily been in the area of digital filtering and the acquisition of new avionic busses. Communication between data acquisition units operating as a system still employs Time Division Multiplexing scheme. These schemes utilize command and data busses like CAIS and PCM. Although this approach is highly efficient, it has many drawbacks. These drawbacks have resulted in rigid system architecture, system bandwidth limitations, highly specialized recorders to acquire unique avionic busses that would otherwise overwhelm the system bandwidth, and unidirectional flow of data and control. This paper describes a network centric data acquisition system that is Ethernet based. Although Ethernet is known as an asynchronous bus, the paper will describe a deterministic time distribution over the bus per IEEE-1588 that allows the use of a packet network for airborne data acquisition. The acquisition unit within the network system is defined by its MIB (Management Information Base) and operates as a data source unit. Other network components may operate as a data sink unit, such as recorders, or as a data source and sink. The role of different units in the network system will be evaluated. The paper will also describe network gateways that allow the use of traditional PCM systems with a network-based system.
66

WHY CHANGE FROM PCM? CASE STUDY OF THE AIRBUS A380 ETHERNET BASED DATA ACQUISITION NETWORK

Sweeney, Paul 10 1900 (has links)
ITC/USA 2005 Conference Proceedings / The Forty-First Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2005 / Riviera Hotel & Convention Center, Las Vegas, Nevada / The adaptation of ubiquitous Ethernet technology to airborne FTI systems is a relatively recent development, offering multiple advantages to FTI applications, including a high data throughput and ability to integrate COTS equipment with ease. For large-scale FTI applications – such as on the Airbus A380 - the use of traditional PCM based data acquisition systems results in enormously complex system architectures, with difficulties in system design, implementation, commissioning, test and maintenance. However, on the A380, the use of the Ethernet-based, IENA protocol alleviated these problems, in addition to offering several additional advantages. This paper explores the theoretical and practical implications of using Ethernet-based data acquisition in an FTI application, with direct comparison to an equivalent PCM based system.
67

A 256 CHANNEL HIGH SPEED MODULAR FLIGHT COMPUTER FOR HYPERSONIC LAUNCH VEHICLES

Finlayson, Simon, Paull, Allan 10 1900 (has links)
ITC/USA 2005 Conference Proceedings / The Forty-First Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2005 / Riviera Hotel & Convention Center, Las Vegas, Nevada / Hypersonic test vehicles require extensive data acquisition in order to accurately determine and refine engine performance. The increasing speed of scramjet engines places new constraints on data manipulation and system control. A compact modular flight computer has been developed that has high speed analog data acquisition, a programmable high data rate PCM (Pulse Code Modulation) encoder, compact data storage, and high speed I/O (Input/Output) capabilities. Principle to the design is the thermal management required for space environments. A functional overview is presented together with a summary of the analog performance. The integration of future capability requirements is also discussed.
68

ADVANCED DISTRIBUTED WIDEBAND DATA ACQUISITION SYSTEM

Berdugo, Albert 10 1900 (has links)
ITC/USA 2005 Conference Proceedings / The Forty-First Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2005 / Riviera Hotel & Convention Center, Las Vegas, Nevada / Wideband data acquisition units have been used as part of an instrumentation system for several decades. Historically, these units operated asynchronously from each other, and from the rest of the instrumentation system when installed on the same test vehicle. When many wideband units are required to slave their formats or sampling rate to the test vehicle’s event of interest such as external computer event clock, radar, or laser pulse train; few solutions were available. Additionally, a single test vehicle may use ten to thirty wideband units operating at up to 20 Mbps each. Such systems present a challenge to the instrumentation engineers to synchronize, transmit safety of flight information, and record. This paper will examine a distributed wideband data acquisition system in which each acquisition unit operates under its own data rate and format, yet remains fully synchronized to an external fixed or variable simultaneous sampling rate to provide total system coherency. The system aggregate rate can be as low as a few Mbps to as high as 1 Gbps. Data acquired from the acquisition units is further multiplexed per IRIG-106 chapter 10 using distributed data multiplexers for recording.
69

AN ETHERNET BASED AIRBORNE DATA ACQUISITION SYSTEM

Dai, Jiwang, DeSelms, Thomas, Grozalis, Edward 10 1900 (has links)
International Telemetering Conference Proceedings / October 20-23, 2003 / Riviera Hotel and Convention Center, Las Vegas, Nevada / There is growing interest in the airborne instrumentation community to adopt commercial standards to obtain scalable data rates, standards based interoperability, and utilization of Commercial Off The Shelf (COTS) products to reduce system costs. However, there has been few such data acquisition systems developed to date. L-3 Telemetry East has developed a prototype called the Network Data Acquisition System (NetDAS), which is based on the 10/100 Base-T Ethernet standard, TCP/UDP/IP network protocols and an industrial Ethernet switch. NetDAS has added network capability to the legacy MPC-800 telemetry system by replacing the existing formatter module with a formatter/controller based on a COTS CPU module and a custom designed bridge module. NetDAS has demonstrated transmission bit rates as high as 20 Mbps from a single unit using UDP/IP and an Ethernet switch. The NetDAS system has also demonstrated scalable and distributed architecture.
70

LEGACY SYSTEMS’ SENSORS BECOME PLUG-N-PLAY WITH IEEE P1451.3 TEDS

Sinclair, Robert, Beech, Russell, Jones, Kevin, Mundon, Scott, Jones, Charles H. 10 1900 (has links)
International Telemetering Conference Proceedings / October 21, 2002 / Town & Country Hotel and Conference Center, San Diego, California / Replacing and maintaining sensors in existing legacy systems is costly and time consuming since no information beyond voltage or current is supplied by these sensors. When a sensor is replaced or added, information for that sensor has to be incorporated by the software programmer into the main system software – a costly and time-consuming process. A method has been developed to give these old sensors the intelligence to meet the requirements of the proposed IEEE P1451.3 standard. This is accomplished with no changes to the legacy hardware and a minor, one time change to the legacy main system software.

Page generated in 0.2652 seconds