• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 31
  • 31
  • 31
  • 31
  • 8
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Prise de décision sous incertitude et raisonnement probabiliste chez l’enfant : aspects développementaux et différentiels / Decision Making under uncertainty and probabilistic reasoning in children : developmental and differential aspects

Audusseau, Jean 13 May 2016 (has links)
L’étude de la prise de décision sous incertitude en psychologie vise à identifier les processus permettant à l’individu d’atteindre un but en sélectionnant une conduite parmi plusieurs alternatives, lorsqu’il existe une incertitude quant aux conséquences respectives de ces différentes conduites. Nos hypothèses se centrent sur le rôle des fonctions exécutives et du raisonnement logico-mathématique chez l’enfant de 5 à 11 ans. Nous abordons cette thématique sous l’angle des approches différentielle (variabilité inter- et intra-individuelle) et développementale (changement micro- et macrogénétique). Quatre études sont présentées. Les deux premières soulignent le rôle de la mémoire de travail dans la résolution de la tâche du casino chez l’enfant de 8 à 11 ans, et émettent quelques réserves quant au rôle des fonctions exécutives à cette même épreuve chez les enfants de 5 à 7 ans (approche longitudinale). La troisième étude vise à étudier les stratégies des enfants de 5 et 6 ans à l’épreuve de quantification des probabilités à partir d’une analyse conjointe des variations individuelles et situationnelles. Nous identifions plusieurs stratégies correspondant à des niveaux de développement distincts, et nous montrons que les enfants les plus âgés témoignent d’une plus grande flexibilité stratégique en réponse aux variations situationnelles. Enfin, la dernière étude cherche à rendre compte des conduites des enfants de 6 à 11 ans à la tâche du casino à partir du modèle de la valence espérée. La perspective est idiographique et se focalise d’abord sur un modèle individuel, avant d’aboutir à une comparaison des seuls individus chez lesquels ce modèle individuel semble pertinent. / The study of decision making under uncertainty in psychology attempts to identify the various processes by which individuals select a course of action among several alternative possibilities in order to reach a particular goal, when the outcomes of this course of action are uncertain. We hypothesize that executive function and logical-mathematical reasoning may play a role in decision making under uncertainty in children aged 5 to 11. We adopt an individual differences approach (between- end within-individual variability) combined with a developmental approach (micro- ans macrogenetic change). Four studies have been conducted. The first two studies underline working memory role in a gambling task in children aged 8 to 11, and cast some doubts on executive function implication in this gambling task in children aged 5 to 7 (test/retest approach). The third study aims to identify the strategies children aged 5 to 6 use in a probability quantification task. By considering both individual and situational variations, we identify various strategies that relates to distinct developmental levels. We show that older children display a greater strategic flexibility in response to situational variations. Finally, the fourth study seeks to investigate decision making in a gambling task with the Expected Valence model in children aged 6 to 11. Our idiographic approach first focuses on an individual model, and then compares the only children whose decisions were appropriately captured by the individual model.
12

A Posteriori And Interactive Approaches For Decision-making With Multiple Stochastic Objectives

Bakhsh, Ahmed 01 January 2013 (has links)
Computer simulation is a popular method that is often used as a decision support tool in industry to estimate the performance of systems too complex for analytical solutions. It is a tool that assists decision-makers to improve organizational performance and achieve performance objectives in which simulated conditions can be randomly varied so that critical situations can be investigated without real-world risk. Due to the stochastic nature of many of the input process variables in simulation models, the output from the simulation model experiments are random. Thus, experimental runs of computer simulations yield only estimates of the values of performance objectives, where these estimates are themselves random variables. Most real-world decisions involve the simultaneous optimization of multiple, and often conflicting, objectives. Researchers and practitioners use various approaches to solve these multiobjective problems. Many of the approaches that integrate the simulation models with stochastic multiple objective optimization algorithms have been proposed, many of which use the Pareto-based approaches that generate a finite set of compromise, or tradeoff, solutions. Nevertheless, identification of the most preferred solution can be a daunting task to the decisionmaker and is an order of magnitude harder in the presence of stochastic objectives. However, to the best of this researcher’s knowledge, there has been no focused efforts and existing work that attempts to reduce the number of tradeoff solutions while considering the stochastic nature of a set of objective functions. In this research, two approaches that consider multiple stochastic objectives when reducing the set of the tradeoff solutions are designed and proposed. The first proposed approach is an a posteriori approach, which uses a given set of Pareto optima as input. The second iv approach is an interactive-based approach that articulates decision-maker preferences during the optimization process. A detailed description of both approaches is given, and computational studies are conducted to evaluate the efficacy of the two approaches. The computational results show the promise of the proposed approaches, in that each approach effectively reduces the set of compromise solutions to a reasonably manageable size for the decision-maker. This is a significant step beyond current applications of decision-making process in the presence of multiple stochastic objectives and should serve as an effective approach to support decisionmaking under uncertainty
13

A Family of Dominance Filters for Multiple Criteria Decision Making: Choosing the Right Filter for a Decision Situation

Iyer, Naresh Sundaram 17 December 2001 (has links)
No description available.
14

Uncertainty in risk assessment : contents and modes of communication

Levin, Rikard January 2005 (has links)
Assessments of chemical health risks are performed by scientific experts. Their intended use is as bases for decisions. This thesis tries to answer the questions of how uncertainty is, and should be, communicated in such risk assessments. The thesis consists of two articles and an introductory essay. Article I focuses on the linguistic aspect of the communication of uncertainty in risk assessments. The aim of the article is to elucidate how risk assessors actually indicate uncertainty in risk assessment reports. Because of the prevalent uncertainty in risk assessment, deriving from several sources, uncertainty is communicated in verbal, rather than numerical terms. A typology of uncertainty indicators – phrases used to express uncertainty – is proposed and applied to the reviewed reports. It is found that the use of such phrases is not transparent, and the article concludes by a number of recommendations for improving the practice. Article II mainly deals with the content of the communication. The overall question treated is what a characterization of uncertainty should include if a decision made on the basis of the risk assessment information is to be as well-founded as possible. A set of conditions is put forward to be fulfilled by a characterization of uncertainty if it is to be adequate from a decision-making point of view. The greater part of the introductory essay is devoted to the concept of uncertainty which, at the conceptual level, does not appear to have been much discussed by philosophers / QC 20101208
15

Flexible Urban Water Distribution Systems

Tsegaye, Seneshaw Amare 01 January 2013 (has links)
With increasing global change pressures such as urbanization and climate change, cities of the future will experience difficulties in efficiently managing scarcer and less reliable water resources. However, projections of future global change pressures are plagued with uncertainties. This increases the difficulty in developing urban water systems that are adaptable to future uncertainty. A major component of an urban water system is the distribution system, which constitutes approximately 80-85% of the total cost of the water supply system (Swamee and Sharma, 2008). Traditionally, water distribution systems (WDS) are designed using deterministic assumptions of main model input variables such as water availability and water demand. However, these deterministic assumptions are no longer valid due to the inherent uncertainties associated with them. Hence, a new design approach is required, one that recognizes these inherent uncertainties and develops more adaptable and flexible systems capable of using their active capacity to act or respond to future alterations in a timely, performance-efficient, and cost-effective manner. This study develops a framework for the design of flexible WDS that are adaptable to new, different, or changing requirements. The framework consists of two main parts. The first part consists of several components that are important in the pre and post--processing of the least-cost design methodology of a flexible WDS. These components include: the description of uncertainties affecting WDS design, identification of potential flexibility options for WDS, generation of flexibility through optimization, and a method for assessing of flexibility. For assessment a suite of performance metrics is developed that reflect the degree of flexibility of a distribution system. These metrics focus on the capability of the WDS to respond and react to future changes. The uncertainties description focuses on the spatial and temporal variation of future demand. The second part consists of two optimization models for the design of centralized and decentralized WDS respectively. The first model generates flexible, staged development plans for the incremental growth of a centralized WDS. The second model supports the development of clustered/decentralized WDS. It is argued that these clustered systems promote flexibility as they provide internal degrees of freedom, allowing many different combinations of distribution systems to be considered. For both models a unique genetic algorithm based flexibility optimization (GAFO) model was developed that maximizes the flexibility of a WDS at the least cost. The efficacy of the developed framework and tools are demonstrated through two case study applications on real networks in Uganda. The first application looks at the design of a centralized WDS in Mbale, a small town in Eastern Uganda. Results from this application indicate that the flexibility framework is able to generate a more flexible design of the centralized system that is 4% - 50% less expensive than a conventionally designed system when compared against several future scenarios. In addition, this application highlights that the flexible design has a lower regret under different scenarios when compared to the conventionally designed system (a difference of 11.2m3/US$). The second application analyzes the design of a decentralized network in the town of Aura, a small town in Northern Uganda. A comparison of a decentralized system to a centralized system is performed, and the results indicate that the decentralized system is 24% - 34% less expensive and that these cost savings are associated with the ability of the decentralized system to be staged in a way that traces the urban growth trajectory more closely. The decentralized clustered WDS also has a lower regret (a difference of 17.7m3/US$) associated with the potential future conditions in comparison with the conventionally centralized system and hence is more flexible.
16

Ekonomie vychýleného odhadu / Economics of Biased Estimation

Drvoštěp, Tomáš January 2014 (has links)
This thesis investigates optimality of heuristic forecasting. According to Goldstein a Gigerenzer (2009), heuristics can be viewed as predictive models, whose simplicity is exploiting the bias-variance trade-off. Economic agents learning in the context of rational expectations (Marcet a Sargent 1989) employ, on the contrary, complex models of the whole economy. Both of these approaches can be perceived as an optimal response complexity of the prediction task and availability of observations. This work introduces a straightforward extension to the standard model of decision making under uncertainty, where agents utility depends on accuracy of their predictions and where model complexity is moderated by regularization parameter. Results of Monte Carlo simulations reveal that in complicated environments, where few observations are at disposal, it is beneficial to construct simple models resembling heuristics. Unbiased models are preferred in more convenient conditions.
17

Markovian sequential decision-making in non-stationary environments : application to argumentative debates / Décision séquentielle markovienne en environnements non-stationnaires : application aux débats d'argumentation

Hadoux, Emmanuel 26 November 2015 (has links)
Les problèmes de décision séquentielle dans l’incertain requièrent qu’un agent prenne des décisions, les unes après les autres, en fonction de l’état de l’environnement dans lequel il se trouve. Dans la plupart des travaux, l’environnement dans lequel évolue l’agent est supposé stationnaire, c’est-à-dire qu’il n’évolue pas avec le temps. Toute- fois, l’hypothèse de stationnarité peut ne pas être vérifiée quand, par exemple, des évènements exogènes au problème interviennent. Dans cette thèse, nous nous intéressons à la prise de décision séquentielle dans des environnements non-stationnaires. Nous proposons un nouveau modèle appelé HS3MDP permettant de représenter les problèmes non-stationnaires dont les dynamiques évoluent parmi un ensemble fini de contextes. Afin de résoudre efficacement ces problèmes, nous adaptons l’algorithme POMCP aux HS3MDP. Dans le but d’apprendre les dynamiques des problèmes de cette classe, nous présentons RLCD avec SCD, une méthode utilisable sans connaître à priori le nombre de contextes. Nous explorons ensuite le domaine de l’argumentation où peu de travaux se sont intéressés à la décision séquentielle. Nous étudions deux types de problèmes : les débats stochastiques (APS ) et les problèmes de médiation face à des agents non-stationnaires (DMP). Nous présentons dans ce travail un modèle formalisant les APS et permettant de les transformer en MOMDP afin d’optimiser la séquence d’arguments d’un des agents du débat. Nous étendons cette modélisation aux DMP afin de permettre à un médiateur de répartir stratégiquement la parole dans un débat. / In sequential decision-making problems under uncertainty, an agent makes decisions, one after another, considering the current state of the environment where she evolves. In most work, the environment the agent evolves in is assumed to be stationary, i.e., its dynamics do not change over time. However, the stationarity hypothesis can be invalid if, for instance, exogenous events can occur. In this document, we are interested in sequential decision-making in non-stationary environments. We propose a new model named HS3MDP, allowing us to represent non-stationary problems whose dynamics evolve among a finite set of contexts. In order to efficiently solve those problems, we adapt the POMCP algorithm to HS3MDPs. We also present RLCD with SCD, a new method to learn the dynamics of the environments, without knowing a priori the number of contexts. We then explore the field of argumentation problems, where few works consider sequential decision-making. We address two types of problems: stochastic debates (APS ) and mediation problems with non-stationary agents (DMP). In this work, we present a model formalizing APS and allowing us to transform them into an MOMDP in order to optimize the sequence of arguments of one agent in the debate. We then extend this model to DMPs to allow a mediator to strategically organize speak-turns in a debate.
18

Risk-Averse and Distributionally Robust Optimization:Methodology and Applications

Rahimian, Hamed 11 October 2018 (has links)
No description available.
19

Emotional working memory training, work demands, stress and anxiety in cognitive performance and decision-making under uncertainty

Heath, Amanda J. January 2018 (has links)
The study seeks to bring together literature on decision-making, the effects of work-related demands and stress, and individual differences in trait anxiety on near and far transfer effects of emotional working memory training (eWM). A sample of 31 students and working participants underwent emotional working memory training through an adaptive dual n-back method or a placebo face match training task for 14 days. Pre- and post-training measures were taken of a near transfer task, digit span, medium transfer measure of executive control, emotional Stroop, and a far transfer task of decision-making under uncertainty, the Iowa Gambling Task (IGT). In line with previous studies, eWM was expected to show gains in transfer task performance between pre- and post-training, and, especially for those scoring high on trait anxiety and workplace measures of stress demands (taken from COPSOQ), for whom there is more scope for improvement in emotional regulation. Gains in emotional Stroop specifically were further expected to show support for the effects of eWM training on emotional well-being in addition to decision-making. Results fell short of replicating previous work on transfer gains, though interference effects in Stroop did lessen in the eWM training group. Relationships between work demands, anxiety, stress and performance in the training itself, reinforce previous research showing that work stress and anxiety lead to cognitive failures, highlighting the importance of intervention studies in the organizational field, but they were not linked to benefits of the training. Resource and methodological limitations of the current study are considered, especially those involved in conducting pre-post designs and cognitive testing online.
20

Towards Human-Like Prediction and Decision-Making for Automated Vehicles in Highway Scenarios / Vers une prédiction et une prise de décision inspirées de celles des humains pour la conduite automatisée de véhicules sur autoroute

Sierra Gonzalez, David 01 April 2019 (has links)
Au cours des dernières décennies, les constructeurs automobiles ont constamment introduit des innovations technologiques visant à rendre les véhicules plus sûrs. Le niveau de sophistication de ces systèmes avancés d’aide à la conduite s’est accru parallèlement aux progrès de la technologie des capteurs et de la puissance informatique intégrée. Plus récemment, une grande partie de la recherche effectuée par l'industrie et les institutions s'est concentrée sur l'obtention d'une conduite entièrement automatisée. Les avantages sociétaux potentiels de cette technologie sont nombreux, notamment des routes plus sûres, des flux de trafic améliorés et une mobilité accrue pour les personnes âgées et les handicapés. Toutefois, avant que les véhicules autonomes puissent être commercialisés, ils doivent pouvoir partager la route en toute sécurité avec d’autres véhicules conduits par des conducteurs humains. En d'autres termes, ils doivent pouvoir déduire l'état et les intentions du trafic environnant à partir des données brutes fournies par divers capteurs embarqués, et les utiliser afin de pouvoir prendre les bonnes décisions de conduite sécurisée. Malgré la complexité apparente de cette tâche, les conducteurs humains ont la capacité de prédire correctement l’évolution du trafic environnant dans la plupart des situations. Cette capacité de prédiction est rendu plus simple grâce aux règles imposées par le code de la route qui limitent le nombre d’hypothèses; elle repose aussi sur l’expérience du conducteur en matière d’évaluation et de réduction du risque. L'absence de cette capacité à comprendre naturellement une scène de trafic constitue peut-être, le principal défi qui freine le déploiement à grande échelle de véhicules véritablement autonomes sur les routes.Dans cette thèse, nous abordons les problèmes de modélisation du comportement du conducteur, d'inférence sur le comportement des autres véhicules, et de la prise de décision pour la navigation sûre. En premier lieu, nous modélisons automatiquement le comportement d'un conducteur générique à partir de données de conduite démontrées, évitant ainsi le réglage manuel traditionnel des paramètres du modèle. Ce modèle codant les préférences d’un conducteur par rapport au réseau routier (par exemple, voie ou vitesse préférées) et aux autres usagers de la route (par exemple, distance préférée au véhicule de devant). Deuxièmement, nous décrivons une méthode qui utilise le modèle appris pour prédire la séquence des actions à long terme de tout conducteur dans une scène de trafic. Cette méthode de prédiction suppose que tous les acteurs du trafic se comportent de manière aversive au risque, et donc ne peut pas prévoir les manœuvres dangereux ou les accidents. Pour pouvoir traiter de tels cas, nous proposons un modèle probabiliste plus sophistiqué, qui estime l'état et les intentions du trafic environnant en combinant la prédiction basée sur le modèle avec les preuves dynamiques fournies par les capteurs. Le modèle proposé imite ainsi en quelque sorte le processus de raisonnement des humains. Nous humains, savons ce qu’un véhicule est susceptible de faire compte tenu de la situation (ceci est donné par le modèle), mais nous surveillerons sa dynamique pour en détecter les écarts par rapport au comportement attendu. En pratique, la combinaison de ces deux sources d’informations se traduit par une robustesse accrue des estimations de l’intention par rapport aux approches reposant uniquement sur des preuves dynamiques. En dernière partie, les deux modèles présentés (comportemental et prédictif) sont intégrés dans le cadre d´une approche décisionnel probabiliste. Les méthodes proposées se sont vues évalués avec des données réelles collectées avec un véhicule instrumenté, attestant de leur efficacité dans le cadre de la conduite autonome sur autoroute. Bien que centré sur les autoroutes, ce travail pourrait être facilement adapté pour gérer des scénarios de trafic alternatifs. / During the past few decades automakers have consistently introduced technological innovations aimed to make road vehicles safer. The level of sophistication of these advanced driver assistance systems has increased parallel to developments in sensor technology and embedded computing power. More recently, a lot of the research made both by industry and institutions has concentrated on achieving fully automated driving. The potential societal benefits of this technology are numerous, including safer roads, improved traffic flows, increased mobility for the elderly and the disabled, and optimized human productivity. However, before autonomous vehicles can be commercialized they should be able to safely share the road with human drivers. In other words, they should be capable of inferring the state and intentions of surrounding traffic from the raw data provided by a variety of onboard sensors, and to use this information to make safe navigation decisions. Moreover, in order to truly navigate safely they should also consider potential obstacles not observed by the sensors (such as occluded vehicles or pedestrians). Despite the apparent complexity of the task, humans are extremely good at predicting the development of traffic situations. After all, the actions of any traffic participant are constrained by the road network, by the traffic rules, and by a risk-aversive common sense. The lack of this ability to naturally understand a traffic scene constitutes perhaps the major challenge holding back the large-scale deployment of truly autonomous vehicles in the roads.In this thesis, we address the full pipeline from driver behavior modeling and inference to decision-making for navigation. In the first place, we model the behavior of a generic driver automatically from demonstrated driving data, avoiding thus the traditional hand-tuning of the model parameters. This model encodes the preferences of a driver with respect to the road network (e.g. preferred lane or speed) and also with respect to other road users (e.g. preferred distance to the leading vehicle). Secondly, we describe a method that exploits the learned model to predict the future sequence of actions of any driver in a traffic scene up to the distant future. This model-based prediction method assumes that all traffic participants behave in a risk-aware manner and can therefore fail to predict dangerous maneuvers or accidents. To be able to handle such cases, we propose a more sophisticated probabilistic model that estimates the state and intentions of surrounding traffic by combining the model-based prediction with the dynamic evidence provided by the sensors. In a way, the proposed model mimics the reasoning process of human drivers: we know what a given vehicle is likely to do given the situation (this is given by the model), but we closely monitor its dynamics to detect deviations from the expected behavior. In practice, combining both sources of information results in an increased robustness of the intention estimates in comparison with approaches relying only on dynamic evidence. Finally, the learned driver behavioral model and the prediction model are integrated within a probabilistic decision-making framework. The proposed methods are validated with real-world data collected with an instrumented vehicle. Although focused on highway environments, this work could be easily adapted to handle alternative traffic scenarios.

Page generated in 0.1065 seconds