Spelling suggestions: "subject:"deepinelastic scattering"" "subject:"keepingelastic scattering""
21 |
Aprecision measurement of the proton structure function F 2 with the H1 experimentKretzschmar, Jan 11 April 2008 (has links)
Der H1 Detektor ist eines der komplexen Messinstrumente am HERA Beschleuniger. Er wurde gebaut, um die Wechselwirkung von Elektronen und Protonen bei höchsten Schwerpunktenergien von bis zu 320 GeV zu untersuchen. Ein Hauptthema ist die Bestimmung der Protonstruktur mit der bestmöglichen Genauigkeit über die Messung des inklusiven tiefinelastischen Wirkungsquerschnitt als Funktion der kinematischen Variablen x und Q2. In dieser Arbeit wird eine neue Messung des tiefinelastischen Wirkungsquerschnitt vorgestellt. Dazu werden Daten analysiert, welche im Jahre 2000 aufgezeichnet wurden. Die Messung ist beschränkt auf den Bereich mittlerer und niedriger Inelastizität y. In diesem Bereich ist die Messung des reduzierten Wirkungsquerschnittes fast identisch mit der Protonstrukturfunktion F2. Die Messung erstreckt sich über etwa eine Größenordnung in der Photon-Virtualität, 10 < Q2 < 180 GeV2, und drei Größenordnungen in der Bjorken Skalenvariable, 0.00013 < x < 0.15. Die Genauigkeit ist durch systematische Unsicherheiten limitiert. Im Vergleich zu den publizierten Ergebnissen mit den Daten aus den Jahren 1996/97 konnten diese Unsicherheiten signifikant reduziert werden. Die Fehler der neuen Messung liegen meist im Bereich von 1,3 - 2,0%, was eine Verbesserung um ca. 30% gegenüber früheren Resultaten darstellt. Keiner der systematischen Effekte dominiert die Unsicherheiten für die Mehrzahl der Messpunkte. Ein unerwartetes Ergebnis ist die signifikante Abweichung der neuen Messung von der publizierten. Eine neue Analyse der alten Daten zeigt, dass diese Diskrepanz nicht in den Daten selbst liegt. Es wird weiterhin gezeigt, dass Annahmen über die simulierten Ereignisdaten, welche für die Analyse der alten Daten verwendet wurden, falsch waren. Der Effekt ist eine um bis zu 3% falsche Messung. Nach einer Korrektur dieses Effektes stimmen die alte und die neue Messung unter Berücksichtigung ihrer Unsicherheiten miteinander überein. / The H1 detector at the HERA collider is a complex device to study the interactions of electrons and protons at a centre of mass energy of 320 GeV. One of the main goals is to determine the sub structure of the proton with the best possible precision by measuring the inclusive Deep Inelastic Scattering cross section as a function of the kinematic variables Q2 and x. This work presents a new measurement of the inclusive Deep Inelastic $ep$ Scattering cross section using the data taken with the H1 experiment in the year 2000. The measurement is restricted to the region of low and intermediate inelasticities y. In this domain the reduced cross section is mostly identical to the proton structure function F2. About one order of magnitude in the photon virtuality, 10 < Q2 < 180 GeV2, and three orders of magnitude in the Bjorken scaling variable, 0.00013 < x < 0.15, are covered. The accuracy in this range is limited by systematic uncertainties. Compared to the published results using the data from the years 1996/97, these uncertainties are reduced by a significant amount and a self consistent measurement is presented. The errors of the new measurement are typically in the range of 1.3 - 2.0%, which means a 30% improvement over the previously published results. None of the considered systematic error sources dominates the total uncertainty in the bulk of the measurement. An unexpected but nevertheless very important result is the observed discrepancy of the measurement to the previously published H1 results. A new analysis of the older data shows, that the data sets themselves are not responsible for this. It is also found, that assumptions made for the simulated event sample were wrong and therefore the published cross section measurement is biased by up to 3%. An approximate correction of the published data leads to a reasonable agreement of the old and the new measurement within their respective uncertainties.
|
22 |
Measurement of Single Spin Asymmetries in Semi-Inclusive Deep Inelastic Scattering Reaction n↑(e, éπ+)X at Jefferson LabAllada, Kalyan C. 01 January 2010 (has links)
What constitutes the spin of the nucleon? The answer to this question is still not completely understood. Although we know the longitudinal quark spin content very well, the data on the transverse quark spin content of the nucleon is still very sparse. Semi-inclusive Deep Inelastic Scattering (SIDIS) using transversely polarized targets provide crucial information on this aspect. The data that is currently available was taken with proton and deuteron targets.
The E06-010 experiment was performed at Jefferson Lab in Hall-A to measure the single spin asymmetries in the SIDIS reaction n↑(e,éπ±/K±)X using transversely polarized 3He target. The experiment used the continuous electron beam provided by the CEBAF accelerator with a beam energy of 5.9 GeV. Hadrons were detected in a high-resolution spectrometer in coincidence with the scattered electrons detected by the BigBite spectrometer. The kinematic coverage focuses on the valence quark region, x = 0.19 to 0.34, at Q2 = 1.77 to 2.73 (GeV/c)2. This is the first measurement on a neutron target. The data from this experiment, when combined with the world data on the proton and the deuteron, will provide constraints on the transversity and Sivers distribution functions on both the u and d-quarks in the valence region. In this work we report on the single spin asymmetries in the SIDIS n↑(e,éπ+)X reaction.
|
23 |
Unintegrated parton distributionsKimber, M. A. January 2001 (has links)
We develop the theory of parton distributions f(_a)(π, k(^t2), μ(^2), unintegrated with respect to transverse momentum k(_t), from a phenomenological standpoint. In particular, we demonstrate a convenient approximation in which the unintegrated functions are obtained by explicitly performing the last step of parton evolution in perturbative QCD, with single-scale functions a(π, Q(^2) as input. Results are presented in the context of DGLAP and combined BFKL-DGLAP evolution, but with angular ordering imposed in the last step of the evolution. We illustrate the application of these unintegrated distributions to predict cross sections for physical processes at lepton-hadron and hadron-hadron colliders. The use of partons with incoming transverse momentum, based on k(_t)-factorisation, is intended to replace phenomenological "smearing" in the perturbative region k(_t) > k(_o) (k(_o) ≈ 1 GeV), and enables the full kinematics of a process to be included even at leading order. We apply our framework to deep inelastic scattering and the fitting of F(_2)(π, Q(^2), to the transverse momentum spectra of prompt photons in hadroproduction and in photoproduction, and to the topical problem of bb production at HERA. Finally, we address the issue of parton-parton recombination (shadowing) at very low values of π, building on recent work by Kovchegov and others to make predictions for the likely magnitude of shadowing effects at the LHC.
|
24 |
Measurement of the EMC Effect of the Helium-3 Nucleus at Jefferson LabHague, Tyler J. 19 April 2020 (has links)
No description available.
|
25 |
Event shapes and power corrections at HERAMcCance, Gavin John January 2001 (has links)
No description available.
|
26 |
QCD analysis of deep inelastic lepton-hadron scattering in the region of small values of the Bjorken parameter xStaśto, Anna January 1999 (has links)
We present the new framework based on BFKL and DGLAP evolution equations in which the leading in(Q(_2)) and in(l/x) terms are treated on equal footing. We introduce a pair of coupled integro-difFerential equations for the quark singlet and the unintegrated gluon distribution. The observable structure functions are calculated using high energy factorisation approach. We also include the sub-leading in (l/x) effects via consistency constraint. We argue that the use of this constraint leads to more stable solution to the Pomeron intercept than that based on the NLO calculation of the BFKL equation alone and generates resummation to all orders of the major part of the subleading in (l/x) effects. The global fit to all available deep inelastic data is performed using a simple parametrisation of the non-perturbative region. We also present the results for the longitudinal structure function and the charm component of the F(_2) structure function. Next; we extend this approach to the low Q(^2) domain. At small distances we use the perturbative approach based on the unified BFKL/DGLAP equations and for large distances we use Vector Meson Dominance Model and, for the higher mass qq states, the additive quark approach. We show the results for the total cross section and for the ratio of the longitudinal and transverse structure functions. Finally, we calculate the dijet production and consider the decorrelation effects in the azimuthal distributions caused by the diffusion in the transverse momentum k(_r) of the exchanged gluon. Using the gluon distribution which is fixed by the fit to the DIS data we are able to make absolute predictions. We show the results for the dF(_r)/dɸ, the total cross section and also the distributions in Q(^2) as well as in the longitudinal momentum fraction of the gluon. Our theoretical predictions are confronted with the measurements made using ZEUS detector at HERA.
|
27 |
Measurement of the proton structure function FL(x,Q2) with the H1 detector at HERAPiec, Sebastian 14 October 2010 (has links)
In dieser Arbeit wird eine Messung des inklusiven tief-inelastischen Positron- Proton Wirkungsquerschnitts bei kleinen Impulsüberträgen Q2 vorgestellt. Die Messung wird zur Bestimmung der longitudinalen Protonstrukturfunktion FL benutzt. Es werden Daten analysiert, welche mit dem H1 Detektor in speziellen Perioden mit reduzierter Protonstrahlenergie im Jahre 2007 aufgezeichnet wurden. Die direkte Bestimmung der Strukturfunktion FL basiert auf der Messung des reduzierten tiefinelastischen Wirkungsquerschnitt bei drei verschiedenen Schwerpunktsenergien. Ein spezieller Rekonstruktionsalgorithmus für Elektronen wurde entwickelt, welcher die Informationen der zentralen Spurkammer CJC und des Siliziumdetektors BST kombiniert. Dieser wurde in die H1 Rekonstruktionssoftware H1REC integriert. Die Effizienz des Algorithmus wird untersucht. Die Arbeit präsentiert den Wirkungsquerschnitt und die FL Messung für Inelastizitäten im Bereich von 2.5 GeV2 < Q2 < 25 GeV2. / A measurement of the inclusive cross section for the deep-inelastic scattering of positrons on protons at low four-momentum transfer squared Q2 is presented. The measurement is used for the extraction of the longitudinal proton structure function FL. The analysis is based on data collected by the H1 experiment during special, low energy runs in the year 2007. The direct technique of the FL determination based on the extraction of the reduced DIS cross sections for three different centre-of-mass energies is used. For the purpose of the analysis a dedicated electron finder has been developed and integrated with the standard H1 reconstruction software H1REC. The algorithm employs information from two independent tracking detectors the Backward Silicon Tracker and the Central Jet Chamber. The performance of the finder is studied. The thesis presents the cross section and the FL measurements in the range of 2.5 GeV2 < Q2 < 25 GeV2.
|
28 |
Measurement of High-Q2 Neutral Current Cross-sections with Longitudinally Polarised Positrons with the ZEUS DetectorStewart, Trevor 07 January 2013 (has links)
The cross sections for neutral current (NC) deep inelastic scattering (DIS) in e+p collisions
with a longitudinally polarised positron beam are measured at high momentum
transfer squared (Q2 > 185 GeV2) at the ZEUS detector at HERA. The HERA accelerator
provides e+-p collisions at a centre-of-mass energy of 318 GeV, which allows the
weak contribution to the NC process to be studied at high Q2. The measurements are
based on a data sample with an integrated luminosity of 135.5 pb-1 collected with the
ZEUS detector in 2006 and 2007. The single differential NC cross sections dsigma/dQ2,
dsigma/dx and dsigma/dy and the reduced cross section are measured. The structure function
xF3 is determined by combining the e+p NC reduced cross sections with the previously
measured e-p measurements. The interference structure function xF 3^gamma,Z is extracted at Q2 = 1500 GeV2.
The cross-section asymmetry between the positive and negative polarisation of the
positron beam is measured and the parity violation effects of the electroweak interaction
are observed.
The predictions of the Standard Model of particle physics agree well with the measurements.
|
29 |
A measurement of jet cross sections at low Q'2 and an interpretation of the results in terms of a partonic structure of the virtual photonSmith, Mark January 1999 (has links)
No description available.
|
30 |
Measurement of High-Q2 Neutral Current Cross-sections with Longitudinally Polarised Positrons with the ZEUS DetectorStewart, Trevor 07 January 2013 (has links)
The cross sections for neutral current (NC) deep inelastic scattering (DIS) in e+p collisions
with a longitudinally polarised positron beam are measured at high momentum
transfer squared (Q2 > 185 GeV2) at the ZEUS detector at HERA. The HERA accelerator
provides e+-p collisions at a centre-of-mass energy of 318 GeV, which allows the
weak contribution to the NC process to be studied at high Q2. The measurements are
based on a data sample with an integrated luminosity of 135.5 pb-1 collected with the
ZEUS detector in 2006 and 2007. The single differential NC cross sections dsigma/dQ2,
dsigma/dx and dsigma/dy and the reduced cross section are measured. The structure function
xF3 is determined by combining the e+p NC reduced cross sections with the previously
measured e-p measurements. The interference structure function xF 3^gamma,Z is extracted at Q2 = 1500 GeV2.
The cross-section asymmetry between the positive and negative polarisation of the
positron beam is measured and the parity violation effects of the electroweak interaction
are observed.
The predictions of the Standard Model of particle physics agree well with the measurements.
|
Page generated in 0.3412 seconds