Spelling suggestions: "subject:"degrees"" "subject:"2degrees""
121 |
Model Complexity in Linear Regression: Extensions for Prediction and HeteroscedasticityLuan, Bo 18 August 2022 (has links)
No description available.
|
122 |
Konceptuell konstruktion av en koppling för mekanisk bergavverkningsmaskin. / Conceptual Design of a Joint for a Mechanical Rock Excavation Machine.Erkers, Johan, Ekroth, Peter January 2019 (has links)
Examensarbetet har skett inom mastersprogrammet Maskinkonstruktion på KTH. Arbetet gjorde tillsammans med Epiroc genom Svea Teknik AB. I dagens gruvarbete använder nästan alla borr- och sprängteknik, men det finns stora problem med detta. Epiroc har börjat utveckla så kallade Mobile Miners, som är konstruerade för att bryta malm utan borr- och sprängteknik. Maskinen ska ha möjlighet att göra alla processer i samma maskin istället för borr- och sprängtekniken, där maskiner byts beroende på process. Den nya tekniken använder sig av ett skärhjul för att utvinna malm. En av maskinerna Epiroc har konstruerat är Mobile Miner 40 V. Maskinen har två moduler, drivmodulen, där alla typ av drivning som hydraulpumpar är placerade och avverkningsmodulen, där skärhjulet sitter. Från tidigare versioner av Mobile Miner har det upptäckts, att det blir väldigt stora vibrationer i operatörshytten, som sitter på drivmodulen. För den nya 40 V skall kopplingen mellan modulerna kunna kopplas isär vid avverking. Dagens koncept är likt en dragkrok, som tillåter rotation i tre frihetsgrader, vilket är något som nu anses vara en risk på grund av sämre stabilitet. De tre olika leden är gir-, roll-, och tipp-led och det är roll-led som inte är önskat då 40 V är väldigt hög relativt sin bredd, vilket ger en ökad risk för tippning. Syftet med detta examensarbete var att utveckla nya stabilare koncept. Utifrån detta gjordes en parameteranalys för att definiera vad en stabilare koppling är. Nya koncept generades och dessa evaluerades med hjälp av en Pughs matris. Två koncept valdes att vidareutvecklas utifrån de givna kraven. Koncept A har låsning i tipp-led med hjälp av en krokkonstruktion, där rotationsaxlarna är separerade samtidigt som koncept B har låsningen i gir-led med hjälp av två hydrauliska cylindrar där rotationsaxlarna skär varandra likt en kardanknut. Med två frihetsgrader utsätts kopplingen för högre laster. Dimensioneringen skedde utifrån det värsta lastfallet, vilket är när avverkningsmodul kör över ett gupp och tvingar med drivmodulen. De två nya koncepten blev stabilare enligt parameteranalysen, men är något större än dagens koncept. / This Master Thesis has been done within the Master's program in Machine Design at KTH. The work was carried out together with Epiroc through Svea Teknik AB. Today almost all mining uses drill and blast techniques, but there are major problems with this. Epiroc has started to design a so-called Mobile Miners, which are designed to excavate ore without drill and blast technology. The machine should be able to do all processes in the same operation instead of the drill and blast technology where different machines are used depending on the process. The new process uses only a cutting wheel to excavate ore. One of the machines Epiroc has designed is the Mobile Miner 40 V. The machine has two modules, the power module where all types of power supply, such as hydraulic, pumps are located and then the mining module where the cutting wheel is located. From other Mobile Miner it has been discovered that there will be very large amount of vibrations in the operator cabin, which is located on the power module, so for the new 40 V the idea is that the coupling between the modules can be disconnected while operating. The current concept is similar to a towbar that allows rotation in three degrees of freedom, which is something that was later considered a risk. The three different axes are yaw, roll, and pitch axis and it is roll axis which is not desired since 40 V is very high relative to its width, which gives a risk of tipping. The purpose of this Master Thesis were to develop a more stable concept. Based on this, a parameter analysis was made to define what a more stable coupling is. New concepts were generated and then evaluated using a Pugh's matrix. Two concepts were chosen to be further developed based on the given requirements. Concept A has the locking procedure in pitch axis with the aid of a hook construction where the rotation axes are separated meanwhile in concept B has the locking procedure in the yaw axis with the help of two hydraulic cylinders where the rotation axes intersect each other like a universal joint. With two degrees of freedom, higher forces are transmitted. The dimensioning was based on the worst load case, which is when the mining module runs over a bump and carry the power module. The two new concepts became more stable according to the parameter analysis, but are somewhat bigger than the current concept.
|
123 |
Nonlinear Stabilization And Control Of Medium Range Surface To Air Interceptor MissilesSnyder, Mark 01 January 2009 (has links)
Nonlinear stabilization and control autopilots are capable of sustaining nominal performance throughout the entire fight envelope an interceptor missile may encounter during hostile engagements and require no gain scheduling to maintain autopilot stability. Due to non minimum phase conditions characteristic of tail controlled missile airframes, a separation of time scales within the dynamic equations of motion between rotational and translational differential equations was enforced to overcome unstable effects of non minimum phase. Dynamic inversion techniques are then applied to derive linearizing equations which, when injected forward into the plant result in a fully controllable linear system. Objectives of the two time scale control architecture are to stabilize vehicle rotational rates while at the same time controlling acceleration within the lateral plane of the vehicle under rapidly increasing dynamic pressure. Full 6 degree of freedom dynamic terms including all coriolis accelerations due to translational and rotational dynamic coupling have been taken into account in the inversion process. The result is a very stable, nonlinear autopilot with fixed control gains fully capable of stable nonlinear missile control. Several actuator systems were also designed to explore the destabilizing effects second order nonlinear actuator characteristics can have on nonlinear autopilot designs.
|
124 |
Analysis of a Thin-Walled Curved Rectangular Beam with Five Degrees of FreedomMoghal, Khurram Zeshan 13 December 2003 (has links)
A study of a thin-walled curved rectangular box beam under torsion and out-of-plane bending is documented in this thesis. A new one-dimensional theory that takes into account warping and distortion in the beam cross-sections is the main focus. Existing available theories for thin-walled curved beams lack rigorous theoretical development, and most have ignored the effects of warping and distortion. A higher order theory including two additional degrees of freedom corresponding to warping and distortion was derived. The conventional three degrees of freedom model was compared with the new five degrees of freedom model. The variation of beam thickness to control and decrease the high distortion variable is investigated.
|
125 |
Bounding the Maximal Character Degree in terms of Smaller Degrees in the Symmetric GroupsSoomro, Sadaf Komal 13 September 2018 (has links)
No description available.
|
126 |
Chopin's 24 Préludes, Opus 28: A Cycle Unified by Motion between the Fifth and Sixth Scale DegreesBoelcke, Andreas Maximilian January 2008 (has links)
No description available.
|
127 |
INDUCED CHARACTERS WITH EQUAL DEGREE CONSTITUENTSLyons, Corey Francis 26 April 2016 (has links)
No description available.
|
128 |
Database and Query Analysis Tools for MySQL: Exploiting Hypertree and Hypergraph DecompositionsChokkalingam, Selvameenal 20 December 2006 (has links)
No description available.
|
129 |
Is my musculoskeletal model complex enough? The implications of six degree of freedom lower limb joints for dynamic consistency and biomechanical relevancePearl, Owen Douglas January 2020 (has links)
Studies have shown that modeling errors due to unaccounted for soft-tissue deformations – known as soft-tissue artifact (STA) – can reduce the efficacy and usefulness of musculoskeletal simulations. Recent work has proven that adding degrees of freedom (DOF) to the joint definitions of a musculoskeletal model’s lower limbs can significantly change the prediction of an individual’s kinematics and dynamics while simultaneously improving estimates of their mechanical work. This indicates that additional modeling complexity may mitigate the effects of STA. However, it remains to be determined whether adding DOF to the lower limb joints can impact a model’s satisfaction of Newton’s Second Law of Motion, or whether a specific number of DOF must be incorporated in order to produce the most biomechanically accurate simulations. To investigate these unknowns, I recruited ten subjects of variable body-mass-indices (BMI) and recorded subject walking data at three speeds normalized by Froude number (Fr) using optical motion capture and an instrumented treadmill (eight male, two females; mean ± s.d.; age 21.6 ± 2.87 years; BMI 25.1 ± 5.1). Then, I added DOF to the lower limb joints of OpenSim’s 23 DOF lower body and torso model until it minimized the magnitude of the pelvis residual forces and moments for a single, representative subject trial (BMI = 24.0, Fr = 0.15). These artificial residual forces and moments are applied at the pelvis to maintain the model’s orientation in space by satisfying Newton’s Second Law. Finally, I simulated all 30 trials with both the original and the edited model and observed how the biomechanical predictions of the two models differed over the range of subject BMIs and walking speeds. After applying both the original and the edited model to the entire data set, I found that the edited model resulted in statistically lower (α = 0.05) residual forces and moments in four of the six directions. Then, after investigating the impact of changes in BMI and Froude number on these residual reductions, I found that two of the six directions exhibited statistically significant correlations with Froude number while none of the six possessed correlations with BMI. Therefore, adding DOF to the lower limb joints can improve a model’s dynamic consistency and combat the effects of STA, and simulations of higher speed behaviors may benefit more from additional DOF. For BMI, it remains to be determined if a higher BMI indicates greater potential for residual reduction, but it was shown that this method of tuning the model for one representative subject was agnostic to BMI. Overall, the method of tuning the model for one representative subject was found to be quite limited. There were multiple subject trials for which reduced residuals corresponded to drastic changes in kinematic and dynamic estimates until they were no longer representative of normal human walking. Therefore, it is possible to improve dynamic consistency by adding DOF to the lower limb joints. But, for biomechanically relevant estimates to be consistently preserved and soft-tissue artifact to be completely minimized, subject-specific model tuning is likely necessary. / Mechanical Engineering
|
130 |
A descriptive analysis of differentiated patterns of decision- making in choice of educational majorAnderson, Belinda C. January 1986 (has links)
Undecidedness of choice of major field of study for undergraduates is a prevalent condition in higher education and represents a problem for academic advisors who may be unable to offer the best assistance to students uncertain of their educational plans. Little is known of the consequences for academic advising programs of such student undecidedness. This study employed an exploratory method designed to obtain information on students' patterns of decision-making regarding major field choice with a sample of university students who initially enrolled in a medium-sized, public university in Southwest Virginia in the Fall 1981 and a sample of community college students who transferred to the university in the Fall 1983 by (a) using student records to identify the major fields selected by undecided students, (b) analyzing differences between "undecided" students and two other groups of students: those who changed majors several times (multiple changers) and those who declared a major and never changed (decided), and (c) measuring the extent to which students perceived certain factors to be influential in the selection of a major field of study by using a researcher-constructed Senior Perception of Major Field Questionnaire. The Internal-External Locus of Control Instrument was used to assess the relationship between certain patterns of decision-making with regard to major field and locus of control.
Major findings of this study include:
1. Undecided students do not appear to differ in any important way from decided or multiple change students. Their lack of initial commitment to a major does not distinguish them, especially in any way associated with negative consequences in higher education, from students who were committed to a decision.
2. Interest in major field was the most important influence in choice of major field.
3. No conclusions were possible regarding differences between the student types in the community college transfer sample because of the small number of subjects classified as undecided. / Ed. D. / incomplete_metadata
|
Page generated in 0.0366 seconds