• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 151
  • 50
  • 15
  • 9
  • 6
  • 6
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 296
  • 100
  • 74
  • 67
  • 34
  • 30
  • 26
  • 24
  • 24
  • 22
  • 20
  • 18
  • 17
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Electromagnetic-Theoretic Analysis and Design of MIMO Antenna Systems

Mohajer Jasebi, Mehrbod January 2011 (has links)
Multiple-Input Multiple-Output (MIMO) systems are a pivotal solution for the significant enhancement of the band-limited wireless channels’ communication capacity. MIMO system is essentially a wireless system with multiple antennas at both the transmitter and receiver ends. Compared to the conventional wireless systems, the main advantages of the MIMO systems are the higher system capacity, more bit rates, more link reliability, and wider coverage area. All of these features are currently considered as crucial performance requirements in wireless communications. Additionally, the emerging new services in wireless applications have created a great motivation to utilize the MIMO systems to fulfil the demands these applications create. The MIMO systems can be combined with other intelligent techniques to achieve these benefits by employing a higher spectral efficiency. The MIMO system design is a multifaceted problem which needs both antenna considerations and baseband signal processing. The performance of the MIMO systems depends on the cross-correlation coefficients between the transmitted/received signals by different antenna elements. Therefore, the Electromagnetic (EM) characteristics of the antenna elements and wireless environment can significantly affect the MIMO system performance. Hence, it is important to include the EM properties of the antenna elements and the physical environment in the MIMO system design and optimizations. In this research, the MIMO system model and system performance are introduced, and the optimum MIMO antenna system is investigated and developed by considering the electromagnetic aspects within three inter-related topics: 1) Fast Numerical Analysis and Optimization of the MIMO Antenna Structures: An efficient and fast optimization method is proposed based on the reciprocity theorem along with the method of moment analysis to minimize the correlation among the received/transmitted signals in MIMO systems. In this method, the effects of the radio package (enclosure) on the MIMO system performance are also included. The proposed optimization method is used in a few practical examples to find the optimal positions and orientations of the antenna elements on the system enclosure in order to minimize the cross-correlation coefficients, leading to an efficient MIMO operation. 2) Analytical Electromagnetic-Theoretic Model for the MIMO Antenna Design: The first requirement for the MIMO antennas is to obtain orthogonal radiation modes in order to achieve uncorrelated signals. Since the Spherical Vector Waves (SVW) form a complete set of orthogonal Eigen-vector functions for the radiated electromagnetic fields, an analytical method based on the SVW approach is developed to excite the orthogonal SVWs to be used as the various orthogonal modes of the MIMO antenna systems. The analytic SVW approach is used to design spherical antennas and to investigate the orthogonality of the radiation modes in the planar antenna structures. 3) Systematic SVW Methodology for the MIMO Antenna Design: Based on the spherical vector waves, a generalized systematic method is proposed for the MIMO antenna design and analysis. The newly developed methodology not only leads to a systematic approach for designing MIMO antennas, but can also be used to determine the fundamental limits and degrees of freedom for designing the optimal antenna elements in terms of the given practical restrictions. The proposed method includes the EM aspects of the antenna elements and the physical environment in the MIMO antenna system, which will provide a general guideline for obtaining the optimal current sources to achieve the orthogonal MIMO modes. The proposed methodology can be employed for any arbitrary physical environment and multi-antenna structures. Without the loss of generality, the SVW approach is employed to design and analyze a few practical examples to show how effective it can be used for MIMO applications. In conclusion, this research addresses the electromagnetic aspects of the antenna analysis, design, and optimization for MIMO applications in a rigorous and systematic manner. Developing such a design and analysis tool significantly contributes to the advancement of high-data-rate wireless communication and to the realistic evaluation of the MIMO antenna system performance by a robust scientifically-based design methodology.
152

Feedback and Cooperation in Wireless Networks

Abdoli Hoseinabadi, Mohammad Javad January 2012 (has links)
The demand for wireless data services has been dramatically growing over the last decade. This growth has been accompanied by a significant increase in the number of users sharing the same wireless medium, and as a result, interference management has become a hot topic of research in recent years. In this dissertation, we investigate feedback and transmitter cooperation as two closely related tools to manage the interference and achieve high data rates in several wireless networks, focusing on additive white Gaussian noise (AWGN) interference, X, and broadcast channels. We start by a one-to-many network, namely, the three-user multiple-input multiple-output (MIMO) Gaussian broadcast channel, where we assume that the transmitter obtains the channel state information (CSI) through feedback links after a finite delay. We also assume that the feedback delay is greater than the channel coherence time, and thus, the CSI expires prior to being exploited by the transmitter for its current transmission. Nevertheless, we show that this delayed CSI at the transmitter (delayed CSIT) can help the transmitter to achieve significantly higher data rates compared to having no CSI. We indeed show that delayed CSIT increases the channel degrees of freedom (DoF), which is translated to an unbounded increase in capacity with increasing signal-to-noise-ratio (SNR). For the symmetric case, i.e. with the same number of antennas at each receiver, we propose different transmission schemes whose achievable DoFs meet the upper bound for a wide range of transmit-receive antenna ratios. Also, for the general non-symmetric case, we propose transmission schemes that characterize the DoF region for certain classes of antenna configurations. Subsequently, we investigate channels with distributed transmitters, namely, Gaussian single-input single-output (SISO) K-user interference channel and 2×K X channel under the delayed CSIT assumption. In these channels, in major contrast to the broadcast channel, each transmitter has access only to its own messages. We propose novel multiphase transmission schemes wherein the transmitters collaboratively align the past interference at appropriate receivers using the knowledge of past CSI. Our achievable DoFs are greater than one (which is the channel DoF without CSIT), and strictly increasing in K. Our results are yet the best available reported DoFs for these channels with delayed CSIT. Furthermore, we consider the K-user r-cyclic interference channel, where each transmitter causes interference on only r receivers in a cyclic manner. By developing a new upper bound, we show that this channel has K/r DoF with no CSIT. Moreover, by generalizing our multiphase transmission ideas, we show that, for r=3, this channel can achieve strictly greater than K/3 DoF with delayed CSIT. Next, we add the capability of simultaneous transmission and reception, i.e. full-duplex operation, to the transmitters, and investigate its impact on the DoF of the SISO Gaussian K-user interference and M×K X channel under the delayed CSIT assumption. By proposing new cooperation/alignment techniques, we show that the full-duplex transmitter cooperation can potentially yield DoF gains in both channels with delayed CSIT. This is in sharp contrast to the previous results on these channels indicating the inability of full-duplex transmitter cooperation to increase the channel DoF with either perfect instantaneous CSIT or no CSIT. With the recent technological advances in implementation of full-duplex communication, it is expected to play a crucial role in the future wireless systems. Finally, we consider the Gaussian K-user interference and K×K X channel with output feedback, wherein each transmitter causally accesses the output of its paired receiver. First, using the output feedback and under no CSIT assumption, we show that both channels can achieve DoF values greater than one, strictly increasing in K, and approaching the limiting value of 2 as K→∞. Then, we develop transmission schemes for the same channels with both output feedback and delayed CSIT, known as Shannon feedback. Our achievable DoFs with Shannon feedback are greater than those with the output feedback for almost all values of K.
153

The Effect Of 7e Learning Cycle Model On The Improvement Of Fifth Grade Students

Mecit, Ozlem 01 September 2006 (has links) (PDF)
The main purpose of the present study was to investigate the effect of 7E learning cycle model as an inquiry-based learning on the improvement of 5th grade students&rsquo / critical thinking skills. This study was conducted during 2005-2006 spring semester in a private primary school in Sakarya. A total of 46 fifth grade students from two different classes of the same science teacher was involved in the study. Two classes were randomly assigned as experimental group and control group. While students in the control group were instructed with traditional method, inquiry-based learning was carried out in the experimental group. Since phenomena that show cause and effect relationships are good inquiry subjects, water cycle in the science and technology curriculum was taken as the unit in the present study. The Cornell Conditional Reasoning Test, from the Cornell Critical Thinking Skills Tests Series was administered as pre-test and post-test to students both in the experimental and control groups. The effects of gender and family income of the students on the dependent variable were also checked. Statistical Analysis of Covariance was used to test the hypotheses of this study. The results indicated that the experimental group achieved significantly better than the control group in both the critical thinking skill test. In other words, inquiry-based learning improved students&rsquo / critical thinking skills. On the other hand, no significant effect of gender and family income on improvement of students&rsquo / critical thinking skills was found.
154

Health Promoting Behaviors And Exercise Stages Of Change Levels Of University Students At Transition To University

Ebem, Zeynep 01 September 2007 (has links) (PDF)
The purposes of this study were to examine (a) health promoting behaviors, (b) physical activity levels, (c) exercise stages of change levels, and (d) exercise preferences of students who had just entered the university by gender and residence. Participants were 438 students from Middle East Technical University (METU) English Preparatory school. Adolescent Health Promotion Scale (AHPS), International Physical Activity Questionnaire (IPAQ), Physical Activity Stages of Change Questionnaire (PASCQ), and Physical Activity Preferences Check-list were used for the data collection. Descriptive statistics, nonparametric statistical methods (Mann Whitney U test, Pearson chi-square test), and a one-way MANOVA were used for the data analysis. According to AHPS results, female students&amp / #8217 / health promoting behaviors were better than those of male students except exercise behavior. Students living at home had higher scores on nutrition behavior and students living in dormitory had higher scores on stress management behavior (p &lt / .05). According to the IPAQ results, male students were more physically active than female counterparts. Students who were living in dormitory had higher physical activity levels than students living at home (p &lt / .05). PASCQ findings indicated no significant differences on the exercise stages of change levels by gender and residence (p &gt / .05). In general, students were at pre-contemplation 9.2%, contemplation 39.3%, preparation 27.8%, action 14.5%, and maintenance 9.2% stages. Swimming, walking, and table tennis were the three most frequently preferred physical activities. In conclusion, female students had better health promoting behaviors than those of male students except exercise behavior. Female students and students living at home were more at risk of inactivity. Approximately 80% of the METU English Preparatory school students&amp / #8217 / physical activity levels were not satisfactory for a healthy life. University physical activity facilities, extracurricular programs and the courses should be reconsidered to support the health promoting behaviors of these students.
155

STEM Employment in the New Economy: A Labor Market Segmentation Approach

Torres-Olave, Blanca Minerva January 2013 (has links)
The present study examined the extent to which the U.S. STEM labor market is stratified in terms of quality of employment. Through a series of cluster analyses and Chi-square tests on data drawn from the 2008 Survey of Income Program Participation (SIPP), the study found evidence of segmentation in the highly-skilled STEM and non-STEM samples, which included workers with a subbaccalaureate diploma or above. The cluster analyses show a pattern consistent with Labor Market Segmentation theory: Higher wages are associated with other primary employment characteristics, including health insurance and pension benefits, as well as full-time employment. In turn, lower wages showed a tendency to cluster with secondary employment characteristics, such as part-time employment, multiple employment, and restricted access to health insurance and pension benefits. The findings also suggest that women have a higher likelihood of being employed in STEM jobs with secondary characteristics. The findings reveal a far more variegated employment landscape than is usually presented in national reports of the STEM workforce. There is evidence that, while STEM employment may be more resilient than non-STEM employment to labor restructuring trends in the new economy, the former is far from immune to secondary labor characteristics. There is a need for ongoing dialogue between STEM education (at all levels), employers, policymakers, and other stakeholders to truly understand not only the barriers to equity in employment relations, but also the mechanisms that create and maintain segmentation and how they may impact women, underrepresented minorities, and the foreign-born.
156

Physical Modeling of the Motions of a Container Ship Moored to a Dock with Comparison to Numerical Simulation

Zhi, Yuanzhe 16 December 2013 (has links)
Container vessel motions need to be small when loading and offloading cargo while moored to wharfs. Waves and their reflections from structures can induce ship motions. These motions are characterized by six degrees of freedom, including translations of surge, sway, and heave and rotations of pitch, roll, and yaw. Monitoring and quantifying these motions offer a reference for design and selection of the mooring system and wharf types. To measure the six degrees of freedom motions of a container ship moored to a dock, a 1:50 scale model is moored to two types of dock, solid wall dock and pile supported dock. Irregular waves of TMA spectrum with various periods, heights, and directions are generated in the wave basin to induce the motions of the model container ship. Optical motion capturing cameras are used to measure and quantify the six degree of freedom motions. Results of the effects of wave period, significant wave height, and wave direction on the motion characteristics of the model container ship moored at the solid dock and a pile supported dock are described in detail. A numerical simulation called aNySIM is applied to numerically predict the motion characteristics of the container ship moored to a solid wall dock only. The physical model experimental results of solid dock are also compared with the numerical simulation. These comparisons indicate that the motion characteristics of the model container ship represent similar trends for both rotations and translations. The experimental and numerical prediction values of motions of the ship moored to a solid wall dock display the same tendencies while differing in magnitude.
157

"What is it like to be one of these people?" : Narrativa strategier för att skapa inlevelse i reportage

Aare, Cecilia January 2013 (has links)
The eyewitnessed reportage has a pronounced character of narrating. The imaginative power of the text helps the reader to empathise with the characters. That makes constructing empathy a necessary skill of reporters. But how can this be done? Despite a tradition of story telling among reporters, narratologists virtually have neglected the reportage genre. The purpose of this thesis is to examine how narrative strategies can be used in reportages and, at the same time, suggest methods for investigating those strategies. The main question is: How can empathy be constructed? Empathy is here defined as a function of presence, perspective, selection and disnarration. A screen of covert values is also added. The study applies a narratological and a media rhetorical approach to journalistic narratives, and focus is on basic discussions supported by analysis samples. Theories by Gérard Genette, Dorrit Cohn, Seymor Chatman, William C. Booth, Gerald Prince, Göran Rossholm, Bengt Nerman and others are discussed. Even though a reportage is about real events, it always represents a personal interpretation. It presents the readers with a represented reality. In a narratological model for the macro level of the reportage I identify the trait of construction as an interaction between three instances: the producer (i. e. the implied author), the narrator and the experiencing reporter. On a micro level this model helps me to explain, for example, how a homodiegetic narrator can be combined with external focalisation, and how another character than the experiencing reporter can be focalised. In the former case I examine the interplay between showing and telling relative to the narrator’s visibility. In the latter case I especially focus on a complex technique for shifting perspectives, both those concerning thoughts, like Free, Indirect Discourse (FID), and those concerning perception. At the same time I study different degrees of perspectivity.
158

Electromagnetic-Theoretic Analysis and Design of MIMO Antenna Systems

Mohajer Jasebi, Mehrbod January 2011 (has links)
Multiple-Input Multiple-Output (MIMO) systems are a pivotal solution for the significant enhancement of the band-limited wireless channels’ communication capacity. MIMO system is essentially a wireless system with multiple antennas at both the transmitter and receiver ends. Compared to the conventional wireless systems, the main advantages of the MIMO systems are the higher system capacity, more bit rates, more link reliability, and wider coverage area. All of these features are currently considered as crucial performance requirements in wireless communications. Additionally, the emerging new services in wireless applications have created a great motivation to utilize the MIMO systems to fulfil the demands these applications create. The MIMO systems can be combined with other intelligent techniques to achieve these benefits by employing a higher spectral efficiency. The MIMO system design is a multifaceted problem which needs both antenna considerations and baseband signal processing. The performance of the MIMO systems depends on the cross-correlation coefficients between the transmitted/received signals by different antenna elements. Therefore, the Electromagnetic (EM) characteristics of the antenna elements and wireless environment can significantly affect the MIMO system performance. Hence, it is important to include the EM properties of the antenna elements and the physical environment in the MIMO system design and optimizations. In this research, the MIMO system model and system performance are introduced, and the optimum MIMO antenna system is investigated and developed by considering the electromagnetic aspects within three inter-related topics: 1) Fast Numerical Analysis and Optimization of the MIMO Antenna Structures: An efficient and fast optimization method is proposed based on the reciprocity theorem along with the method of moment analysis to minimize the correlation among the received/transmitted signals in MIMO systems. In this method, the effects of the radio package (enclosure) on the MIMO system performance are also included. The proposed optimization method is used in a few practical examples to find the optimal positions and orientations of the antenna elements on the system enclosure in order to minimize the cross-correlation coefficients, leading to an efficient MIMO operation. 2) Analytical Electromagnetic-Theoretic Model for the MIMO Antenna Design: The first requirement for the MIMO antennas is to obtain orthogonal radiation modes in order to achieve uncorrelated signals. Since the Spherical Vector Waves (SVW) form a complete set of orthogonal Eigen-vector functions for the radiated electromagnetic fields, an analytical method based on the SVW approach is developed to excite the orthogonal SVWs to be used as the various orthogonal modes of the MIMO antenna systems. The analytic SVW approach is used to design spherical antennas and to investigate the orthogonality of the radiation modes in the planar antenna structures. 3) Systematic SVW Methodology for the MIMO Antenna Design: Based on the spherical vector waves, a generalized systematic method is proposed for the MIMO antenna design and analysis. The newly developed methodology not only leads to a systematic approach for designing MIMO antennas, but can also be used to determine the fundamental limits and degrees of freedom for designing the optimal antenna elements in terms of the given practical restrictions. The proposed method includes the EM aspects of the antenna elements and the physical environment in the MIMO antenna system, which will provide a general guideline for obtaining the optimal current sources to achieve the orthogonal MIMO modes. The proposed methodology can be employed for any arbitrary physical environment and multi-antenna structures. Without the loss of generality, the SVW approach is employed to design and analyze a few practical examples to show how effective it can be used for MIMO applications. In conclusion, this research addresses the electromagnetic aspects of the antenna analysis, design, and optimization for MIMO applications in a rigorous and systematic manner. Developing such a design and analysis tool significantly contributes to the advancement of high-data-rate wireless communication and to the realistic evaluation of the MIMO antenna system performance by a robust scientifically-based design methodology.
159

Feedback and Cooperation in Wireless Networks

Abdoli Hoseinabadi, Mohammad Javad January 2012 (has links)
The demand for wireless data services has been dramatically growing over the last decade. This growth has been accompanied by a significant increase in the number of users sharing the same wireless medium, and as a result, interference management has become a hot topic of research in recent years. In this dissertation, we investigate feedback and transmitter cooperation as two closely related tools to manage the interference and achieve high data rates in several wireless networks, focusing on additive white Gaussian noise (AWGN) interference, X, and broadcast channels. We start by a one-to-many network, namely, the three-user multiple-input multiple-output (MIMO) Gaussian broadcast channel, where we assume that the transmitter obtains the channel state information (CSI) through feedback links after a finite delay. We also assume that the feedback delay is greater than the channel coherence time, and thus, the CSI expires prior to being exploited by the transmitter for its current transmission. Nevertheless, we show that this delayed CSI at the transmitter (delayed CSIT) can help the transmitter to achieve significantly higher data rates compared to having no CSI. We indeed show that delayed CSIT increases the channel degrees of freedom (DoF), which is translated to an unbounded increase in capacity with increasing signal-to-noise-ratio (SNR). For the symmetric case, i.e. with the same number of antennas at each receiver, we propose different transmission schemes whose achievable DoFs meet the upper bound for a wide range of transmit-receive antenna ratios. Also, for the general non-symmetric case, we propose transmission schemes that characterize the DoF region for certain classes of antenna configurations. Subsequently, we investigate channels with distributed transmitters, namely, Gaussian single-input single-output (SISO) K-user interference channel and 2×K X channel under the delayed CSIT assumption. In these channels, in major contrast to the broadcast channel, each transmitter has access only to its own messages. We propose novel multiphase transmission schemes wherein the transmitters collaboratively align the past interference at appropriate receivers using the knowledge of past CSI. Our achievable DoFs are greater than one (which is the channel DoF without CSIT), and strictly increasing in K. Our results are yet the best available reported DoFs for these channels with delayed CSIT. Furthermore, we consider the K-user r-cyclic interference channel, where each transmitter causes interference on only r receivers in a cyclic manner. By developing a new upper bound, we show that this channel has K/r DoF with no CSIT. Moreover, by generalizing our multiphase transmission ideas, we show that, for r=3, this channel can achieve strictly greater than K/3 DoF with delayed CSIT. Next, we add the capability of simultaneous transmission and reception, i.e. full-duplex operation, to the transmitters, and investigate its impact on the DoF of the SISO Gaussian K-user interference and M×K X channel under the delayed CSIT assumption. By proposing new cooperation/alignment techniques, we show that the full-duplex transmitter cooperation can potentially yield DoF gains in both channels with delayed CSIT. This is in sharp contrast to the previous results on these channels indicating the inability of full-duplex transmitter cooperation to increase the channel DoF with either perfect instantaneous CSIT or no CSIT. With the recent technological advances in implementation of full-duplex communication, it is expected to play a crucial role in the future wireless systems. Finally, we consider the Gaussian K-user interference and K×K X channel with output feedback, wherein each transmitter causally accesses the output of its paired receiver. First, using the output feedback and under no CSIT assumption, we show that both channels can achieve DoF values greater than one, strictly increasing in K, and approaching the limiting value of 2 as K→∞. Then, we develop transmission schemes for the same channels with both output feedback and delayed CSIT, known as Shannon feedback. Our achievable DoFs with Shannon feedback are greater than those with the output feedback for almost all values of K.
160

Application of optimal prediction to molecular dynamics

Barber IV, John Letherman January 2004 (has links)
Thesis (Ph.D.); Submitted to the University of California at Berkeley, Berkeley, CA 94720 (US); 1 Dec 2004. / Published through the Information Bridge: DOE Scientific and Technical Information. "LBNL--56842" Barber IV, John Letherman. USDOE Director. Office of Science. Advanced Scientific Computing Research (US) 12/01/2004. Report is also available in paper and microfiche from NTIS.

Page generated in 0.0359 seconds