• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • Tagged with
  • 11
  • 7
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelling and design of antennas for ground-penetrating radar systems

Martel, Cedric January 2002 (has links)
No description available.
2

Development of a mechanical means for antipersonnel landmine neutralization

Burton, Thomas I 21 June 2006
Antipersonnel (AP) landmines are cheap and simple weapons used in warfare and other armed conflicts. The most effective and accepted form of landmine clearance is by manual demining, but this method is slow, laborious, costly and hazardous. The use of mechanical devices such as chain flails for landmine neutralization and/or area reduction has the potential of greatly aiding landmine clearance. However, mechanical clearance methods have not been fully accepted in the landmine clearance community due to a lack of knowledge and scientific data the actual soil-tool interaction and the landmine clearance effectiveness. <p>The research objective was to develop a mechanical device for the neutralization of AP landmines. The device was to deliver sufficient force to produce adequate ground deflection for detonation of typical antipersonnel landmines at depths up to 200 mm. Other design parameters included design simplicity, high durability with low and ease of maintenance and flexible operation. <p>A design matrix was employed to select an appropriate design for further analysis, resulting in preliminary testing and evaluation of off the shelf mechanisms, namely a Tamper and a Jackhammer. Key parameters included interaction pressure, sensor deflection and duty cycle. It was concluded that a tamper design resulted in superior demining capabilities. A final testing phase was designed and conducted to further research the effectiveness of the device and to determine optimal operational parameters between two shoe sizes and the number of pass applications. A test rig was designed and fabricated to attach the tamper system onto the Terra Mechanics Rig for test automation. Test results revealed that the small tamper shoe configuration performed better than a larger shoe, but only marginally so. Test results also indicated a two pass operation was optimal and that the proper shoe configuration is dependent on the demining environment. Furthermore, the large magnitudes of interaction pressure, deflection sensor displacement and total impulse indicate that the tamper system is capable of detonating AP landmines at depths of up to 200 mm.
3

Development of a mechanical means for antipersonnel landmine neutralization

Burton, Thomas I 21 June 2006 (has links)
Antipersonnel (AP) landmines are cheap and simple weapons used in warfare and other armed conflicts. The most effective and accepted form of landmine clearance is by manual demining, but this method is slow, laborious, costly and hazardous. The use of mechanical devices such as chain flails for landmine neutralization and/or area reduction has the potential of greatly aiding landmine clearance. However, mechanical clearance methods have not been fully accepted in the landmine clearance community due to a lack of knowledge and scientific data the actual soil-tool interaction and the landmine clearance effectiveness. <p>The research objective was to develop a mechanical device for the neutralization of AP landmines. The device was to deliver sufficient force to produce adequate ground deflection for detonation of typical antipersonnel landmines at depths up to 200 mm. Other design parameters included design simplicity, high durability with low and ease of maintenance and flexible operation. <p>A design matrix was employed to select an appropriate design for further analysis, resulting in preliminary testing and evaluation of off the shelf mechanisms, namely a Tamper and a Jackhammer. Key parameters included interaction pressure, sensor deflection and duty cycle. It was concluded that a tamper design resulted in superior demining capabilities. A final testing phase was designed and conducted to further research the effectiveness of the device and to determine optimal operational parameters between two shoe sizes and the number of pass applications. A test rig was designed and fabricated to attach the tamper system onto the Terra Mechanics Rig for test automation. Test results revealed that the small tamper shoe configuration performed better than a larger shoe, but only marginally so. Test results also indicated a two pass operation was optimal and that the proper shoe configuration is dependent on the demining environment. Furthermore, the large magnitudes of interaction pressure, deflection sensor displacement and total impulse indicate that the tamper system is capable of detonating AP landmines at depths of up to 200 mm.
4

Conceptual design of miniature vegetation cutter for demining activities in difficult terrain – an evaluation : Intended for the Chouf Mountains, Lebanon

Sjölander, Emmily, Risén, Hanna January 2009 (has links)
A conceptual design of a miniature vegetation cutter for use in minefields in southern Lebanon has been developed and the authors have evaluated its mechanical properties focusing on the stress in welded joints using the CAD software Pro/Engineer Wildfire 4.0. The conceptual design has been developed in the field in close cooperation with field staff from MAG Lebanon. The requirements from the field specify that the cutter should have a cutting range of 80 cm, be equipped with adjustable covers, weigh less than 200 kg, be fitted to a commercial hydraulic excavator, and have the ability to cut vegetation, bushes and small trees including (olive) trees with a diameter up to 10 cm. The miniature cutter is to be manufactured in the field and fitted to a commercial hydraulic ex­cava­tor (Caterpillar 301.6C). It consists of a rotor on which eight cutting blades, alternatively chains, are attached in a helix formation. The cutter is protected by adjustable covers. When in operation, the rotor spins at 750 revolutions per minute whereby the blades cut through the shrubs and bushes in the cutter’s path. The blades are mounted in a T-shape on arms, which are fastened to the rotor by a pin joint between two brackets (each) on the rotor. Blades and arms are to be welded together, as are the brackets to the rotor. These welded joints are the primary focus of the report. 3D CAD models have been created and analysed in PTC Pro/Engineer Wildfire 4.0 to ascertain that the stress in the joints will not exceed the yield strength of the weld consumables, which should be 500 MPa. Ideally, the stress in the joints would be half the yield strength. Type of bearings and a hydraulic motor have been selected for the cutter. Based on the specifica­tions of the hydraulic motor an approximation of the forces acting on the weld joints in the case of an accidental stop (e.g. collision with a rock) has been calculated, and entered into the CAD software. Also, an approximation of the size (diameter) of branches the cutter would be able to tear apart in the case of branches getting stuck has been calculated and shown to be about 14.6 mm. Based on this, it is estimated that the cutter should be used only in areas where the shrubbery is of 20-30 mm in diameter, maximum. Considering this, and the relative light weight of the cutter, it is not likely that the cutter will be able to cut through the larger olive trees as requested, but it is considered that the tool still could be a valuable asset for mine clearing in Lebanon. In order to cut through thicker trees, it would be necessary to increase the power supply to the cutting system as well as the sturdiness of the cutting parts. Finding the required power and technical solutions for this demands further research which does not fit within the time frame for this report. A preliminary weight approximation shows that the cutter will weigh roughly 170 kg, which falls below the limit of 200 kg and leaving some room for the bearings to be added. The results from the stress analyses show that the stress in the welded joints falls well below the yield limit of 500 MPa, but not below 250 MPa. Still, the stress in all the welded joints is shown to be less than 300 MPa or at 40 % of the limit, which may still be acceptable. The end user will have to decide whether this is an acceptable safety margin before manufacturing the cutter and if it is not, measures will need to be taken to reinforce the weld joints and try to minimise the stress concentration in them.
5

Improvement of sampling system for Remote Explosive Scent Tracing

Uddqvist, Anette, Roberthson, Ida January 2010 (has links)
Remote Explosives Scent Tracing (REST) is the concept of bringing the mine field to Mine Detection Dogs or Rats, instead of vice versa. This is done by collecting air or dust from minefields, and taking these samples to a laboratory environment, where they are subsequently analysed by the detection animals. REST has previously proven to be very fast and cost effective, but one of the issues facing the method is that there is yet no reliable tool for sampling dust. In earlier sampling units, air has been collected in filters. However, the concentration of scents related to mines has been seen to be a million times higher in dust particles than in air sampled from above the ground. The aim of this project was to evaluate and improve a dust sampling prototype constructed in the beginning of 2010. The project was initiated in cooperation with the GICHD (Geneva International Centre for Humanitarian demining), and carried out in cooperation with APOPO (Anti-Personnel Landmines Detection Product Development). During this project, information was gathered on the samplers that have previously been used for REST. A new prototype was made in Trondheim in cooperation with NTNU (Norwegian University of Science and Technology). With this new sampler prototype, tests were made in a laboratory environment at NTNU as well as at APOPO’s test mine field in Morogoro, Tanzania. Several obstacles were faced, such as difficulties to test and evaluate the sampler during the rainy season, insufficient air supply for the prototype, and issues with the laboratory equipment in Morogoro. Due to this, the number of tests performed and the number of repetitions of each test was not as high as would have been desired. The results of the information gathering and the tests are presented in this report, and the knowledge and experience gained resulted in several suggestions for improvements for the sampler prototype. A suggestion for a grid design that would cover the entire mouth piece, with a built-in distance to the suction inlet, in order to avoid both clogging of the grid and that too much dust is sucked in if the mouth piece touches the ground and a fully adjustable sampling unit. Several other recommendations are given that would reduce cross contamination risks and improve ergonomics and other aspects of the sampler prototype.
6

Conceptual design of miniature vegetation cutter for demining activities in difficult terrain – an evaluation : Intended for the Chouf Mountains, Lebanon

Sjölander, Emmily, Risén, Hanna January 2009 (has links)
<p>A conceptual design of a miniature vegetation cutter for use in minefields in southern Lebanon has been developed and the authors have evaluated its mechanical properties focusing on the stress in welded joints using the CAD software <em>Pro/Engineer Wildfire 4.0</em>. The conceptual design has been developed in the field in close cooperation with field staff from MAG Lebanon.</p><p>The requirements from the field specify that the cutter should have a cutting range of 80 cm, be equipped with adjustable covers, weigh less than 200 kg, be fitted to a commercial hydraulic excavator, and have the ability to cut vegetation, bushes and small trees including (olive) trees with a diameter up to 10 cm.</p><p>The miniature cutter is to be manufactured in the field and fitted to a commercial hydraulic ex­cava­tor (Caterpillar 301.6C). It consists of a rotor on which eight cutting blades, alternatively chains, are attached in a helix formation. The cutter is protected by adjustable covers. When in operation, the rotor spins at 750 revolutions per minute whereby the blades cut through the shrubs and bushes in the cutter’s path. The blades are mounted in a T-shape on arms, which are fastened to the rotor by a pin joint between two brackets (each) on the rotor. Blades and arms are to be welded together, as are the brackets to the rotor. These welded joints are the primary focus of the report. 3D CAD models have been created and analysed in <em>PTC Pro/Engineer Wildfire 4.0</em> to ascertain that the stress in the joints will not exceed the yield strength of the weld consumables, which should be 500 MPa. Ideally, the stress in the joints would be half the yield strength.</p><p>Type of bearings and a hydraulic motor have been selected for the cutter. Based on the specifica­tions of the hydraulic motor an approximation of the forces acting on the weld joints in the case of an accidental stop (e.g. collision with a rock) has been calculated, and entered into the CAD software. Also, an approximation of the size (diameter) of branches the cutter would be able to tear apart in the case of branches getting stuck has been calculated and shown to be about 14.6 mm. Based on this, it is estimated that the cutter should be used only in areas where the shrubbery is of 20-30 mm in diameter, maximum. Considering this, and the relative light weight of the cutter, it is not likely that the cutter will be able to cut through the larger olive trees as requested, but it is considered that the tool still could be a valuable asset for mine clearing in Lebanon. In order to cut through thicker trees, it would be necessary to increase the power supply to the cutting system as well as the sturdiness of the cutting parts. Finding the required power and technical solutions for this demands further research which does not fit within the time frame for this report.</p><p>A preliminary weight approximation shows that the cutter will weigh roughly 170 kg, which falls below the limit of 200 kg and leaving some room for the bearings to be added.</p><p>The results from the stress analyses show that the stress in the welded joints falls well below the yield limit of 500 MPa, but not below 250 MPa. Still, the stress in all the welded joints is shown to be less than 300 MPa or at 40 % of the limit, which may still be acceptable. The end user will have to decide whether this is an acceptable safety margin before manufacturing the cutter and if it is not, measures will need to be taken to reinforce the weld joints and try to minimise the stress concentration in them.</p>
7

Improvement of sampling system for Remote Explosive Scent Tracing

Uddqvist, Anette, Roberthson, Ida January 2010 (has links)
<p>Remote Explosives Scent Tracing (REST) is the concept of bringing the mine field to Mine Detection Dogs or Rats, instead of vice versa. This is done by collecting air or dust from minefields, and taking these samples to a laboratory environment, where they are subsequently analysed by the detection animals.</p><p>REST has previously proven to be very fast and cost effective, but one of the issues facing the method is that there is yet no reliable tool for sampling dust. In earlier sampling units, air has been collected in filters. However, the concentration of scents related to mines has been seen to be a million times higher in dust particles than in air sampled from above the ground. The aim of this project was to evaluate and improve a dust sampling prototype constructed in the beginning of 2010. The project was initiated in cooperation with the GICHD (Geneva International Centre for Humanitarian demining), and carried out in cooperation with APOPO (Anti-Personnel Landmines Detection Product Development).</p><p>During this project, information was gathered on the samplers that have previously been used for REST. A new prototype was made in Trondheim in cooperation with NTNU (Norwegian University of Science and Technology). With this new sampler prototype, tests were made in a laboratory environment at NTNU as well as at APOPO’s test mine field in Morogoro, Tanzania. Several obstacles were faced, such as difficulties to test and evaluate the sampler during the rainy season, insufficient air supply for the prototype, and issues with the laboratory equipment in Morogoro. Due to this, the number of tests performed and the number of repetitions of each test was not as high as would have been desired.</p><p>The results of the information gathering and the tests are presented in this report, and the knowledge and experience gained resulted in several suggestions for improvements for the sampler prototype. A suggestion for a grid design that would cover the entire mouth piece, with a built-in distance to the suction inlet, in order to avoid both clogging of the grid and that too much dust is sucked in if the mouth piece touches the ground and a fully adjustable sampling unit. Several other recommendations are given that would reduce cross contamination risks and improve ergonomics and other aspects of the sampler prototype.</p>
8

A Curvelet Prescreener for Detection of Explosive Hazards in Handheld Ground-Penetrating

White, Julie 11 August 2017 (has links)
Explosive hazards, above and below ground, are a serious threat to civilians and soldiers. In an attempt to mitigate these threats, different forms of explosive hazard detection (EHD) exist; e.g, multi-sensor hand-held platforms, downward looking and forward looking vehicle mounted platforms, etc. Robust detection of these threats resides in the processing and fusion of different data from multiple sensing modalities, e.g., radar, infrared, electromagnetic induction (EMI), etc. The focus of this thesis is on the implementation of two new algorithms to form a new energy-based prescreener in hand-held ground penetrating radar (GPR). First, B-scan signal data is curvelet filtered using either Reverse- Reconstruction followed by Enhancement (RRE) or selectivity with respect to wedge information in the Curvelet transform, Wedge Selection (WS). Next, the result of a bank of matched filter are aggregated and run a size contrast filter with Bhattacharyya distance. Alarms are then combined using weighted mean shift clustering. Results are demonstrated in the context of receiver operating characteristics (ROC) curve performance on data from a U.S. Army test site that contains multiple target and clutter types, burial depths, and times of the day.
9

Ammunitions- och minröjning i modern konflikt : Ett tekniskt perspektiv

Ericsson, Christian January 2009 (has links)
<p>Den här uppsatsen är skriven inom ramen för ämnet <em>Krigsvetenskap</em> under författarens studier på <em>Yrkesofficersprogrammet</em> 2006-2009 till arméteknisk officer. I <em>Ammunitions- och minröjning i modern konflikt</em> ges läsaren genom deskriptiv metod en exposé över ammunitions- och minröjningens grunder, historia och nutid. Uppsatsens generella syften är att avhandla problematik som svenska ammunitions- och minröjare i sitt yrkesutövande idag kan ställas inför. Och hur delar av den tekniska organisationen och teknisk utrustning för detektion, lokalisering och klassificering av minor, Explosive remnants of war (ERW), Improvised explosive device (IED) och försåt kan bidra till att lösa denna problematik. Författaren genomför utifrån sina intervjuer och litteraturstudier prediktioner av den kommande utvecklingen på området. Prediktionerna innefattar bland annat tydligare teknisk stödorganisation och multisensorplattformar för detektion, lokalisering och klassificering av minor, ERW och IED. I texten redovisas viss forskning från Totalförsvarets forskningsinstitut (FOI) och visst arbete vid Försvarets materielverk (FMV), Totalförsvarets ammunitions- och minröjningscentrum (SWEDEC).</p> / <p>This essay is written in the course of <em>War science</em> during the author’s studies to become an Officer in the technical corps, in the Swedish armed forces. Due to the descriptive method in <em>Explosive Ordnance Disposal and demining in modern conflict </em>the reader gets an exposé of the basics, history, and present time features for the Swedish EOD- and Demining personnel. The main purpose with this essay is to discuss the problems that Swedish Explosive ordnance clearance (EOC) personnel might encounter in their current daily service. The opportunities for parts of the supporting technical corps and the technical equipment for detecting, locating and classifying mines, Explosive remnants of war (ERW), Improvised explosive device (IED) and booby-traps to be at hand in the process of solving these problems are also discussed. From interviews and literature studies the author conducts predictions of the development in the subject area. The predictions contains amongst others a more understandable supporting technical corps and multi-sensing-platforms for detecting, locating and classifying mines, ERW, IED and booby-traps. Some of the research that the Swedish defence research agency (FOI), the Swedish Defence Material Administration (FMV) and the Swedish EOD- and Demining Centre (SWEDEC) have produced is presented in the essay.</p>
10

Ammunitions- och minröjning i modern konflikt : Ett tekniskt perspektiv

Ericsson, Christian January 2009 (has links)
Den här uppsatsen är skriven inom ramen för ämnet Krigsvetenskap under författarens studier på Yrkesofficersprogrammet 2006-2009 till arméteknisk officer. I Ammunitions- och minröjning i modern konflikt ges läsaren genom deskriptiv metod en exposé över ammunitions- och minröjningens grunder, historia och nutid. Uppsatsens generella syften är att avhandla problematik som svenska ammunitions- och minröjare i sitt yrkesutövande idag kan ställas inför. Och hur delar av den tekniska organisationen och teknisk utrustning för detektion, lokalisering och klassificering av minor, Explosive remnants of war (ERW), Improvised explosive device (IED) och försåt kan bidra till att lösa denna problematik. Författaren genomför utifrån sina intervjuer och litteraturstudier prediktioner av den kommande utvecklingen på området. Prediktionerna innefattar bland annat tydligare teknisk stödorganisation och multisensorplattformar för detektion, lokalisering och klassificering av minor, ERW och IED. I texten redovisas viss forskning från Totalförsvarets forskningsinstitut (FOI) och visst arbete vid Försvarets materielverk (FMV), Totalförsvarets ammunitions- och minröjningscentrum (SWEDEC). / This essay is written in the course of War science during the author’s studies to become an Officer in the technical corps, in the Swedish armed forces. Due to the descriptive method in Explosive Ordnance Disposal and demining in modern conflict the reader gets an exposé of the basics, history, and present time features for the Swedish EOD- and Demining personnel. The main purpose with this essay is to discuss the problems that Swedish Explosive ordnance clearance (EOC) personnel might encounter in their current daily service. The opportunities for parts of the supporting technical corps and the technical equipment for detecting, locating and classifying mines, Explosive remnants of war (ERW), Improvised explosive device (IED) and booby-traps to be at hand in the process of solving these problems are also discussed. From interviews and literature studies the author conducts predictions of the development in the subject area. The predictions contains amongst others a more understandable supporting technical corps and multi-sensing-platforms for detecting, locating and classifying mines, ERW, IED and booby-traps. Some of the research that the Swedish defence research agency (FOI), the Swedish Defence Material Administration (FMV) and the Swedish EOD- and Demining Centre (SWEDEC) have produced is presented in the essay.

Page generated in 0.1466 seconds