• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Absolutely Pure Modules

Pinzon, Katherine R. 01 January 2005 (has links)
Absolutely pure modules act in ways similar to injective modules. Therefore, through-out this document we investigate many of these properties of absolutely pure modules which are modelled after those similar properties of injective modules. The results we develop can be broken into three categories: localizations, covers and derived functors. We form S1M, an S1R module, for any Rmodule M. We state and prove some known results about localizations. Using these known techniques and properties of localizations, we arrive at conditions on the ring R which make an absolutely pure S1Rmodule into an absolutely pure Rmodule. We then show that under certain conditions, if A is an absolutely pure Rmodule, then S1A will be an absolutely pure S1Rmodule. Also, we dene conditions on the ring R which guarantee that the class of absolutely pure modules will be covering. These include R being left coherent, which we show implies a number of other necessary properties. We also develop derived functors similar to Extn R (whose development uses injective modules). We call these functors Axtn R, prove they are well dened, and develop many of their properties. Then we dene natural maps between Axtn(M;N) and Extn(M;N) and discuss what conditions on M and N guarantee that these maps are isomorphisms.
2

Ακριβείς ακολουθίες, ομολογιακοί και παράγωγοι συναρτητές

Παπασταύρου, Αικατερίνη 09 April 2010 (has links)
Στην παρούσα εργασία παρουσιάζουμε βασικές έννοιες του αντικειμένου της Ομολογιακής Άλγεβρας,όπως αυτές των μακρών ακριβών ακολουθιών, τις επεκτάσεις των modules και τις ομάδες Ext. Στη συνέχεια παρουσιάζουμε τις επεκτάσεις των ομολογιακών και συνομολογιακών συναρτητών, τους παράγωγους συναρτητές, που προκύπτουν μέσω προβολικών και ενριπτικών επιλύσεων αντικειμένων Αβελιανών κατηγοριών. Τέλος χαρακτηρίζουμε τους παράγωγους συναρτητές μέσω της καθολικής τους ιδιότητας. / In this work we present the basic concepts of Homological Algebra, such as the long exact sequences, the extensions of modules and the Ext-groups.Further we present the extensions of the homology and cohomology functors, the derived functors that arise through projective and injective resolutions from objects of an Abelian category. Finally we characterize derived functors through their universal property.
3

Torsion Products of Modules Over the Orbit Category

Keiper, Graham January 2016 (has links)
The goal of this paper is to extend Sanders Mac Lane's formulation of the torsion product as equivalence classes of projective chain complexes in the setting of modules over a ring to the setting of modules over small categories. The motivation to extend the definition was with a specific view to the orbit category. The main difficulty was in defining an appropriate dual for modules over small categories. During the course of our investigation it was discovered that modules over small categories can be formulated as modules over a matrix ring without losing any of the key features. / Thesis / Master of Science (MSc)
4

Grothendieck Group Decategorifications and Derived Abelian Categories

McBride, Aaron January 2015 (has links)
The Grothendieck group is an interesting invariant of an exact category. It induces a decategorication from the category of essentially small exact categories (whose morphisms are exact functors) to the category of abelian groups. Similarly, the triangulated Grothendieck group induces a decategorication from the category of essentially small triangulated categories (whose morphisms are triangulated functors) to the category of abelian groups. In the case of an essentially small abelian category, its Grothendieck group and the triangulated Grothendieck group of its bounded derived category are isomorphic as groups via a natural map. Because of this, homological algebra and derived functors become useful in surprising ways. This thesis is an expository work that provides an overview of the theory of Grothendieck groups with respect to these decategorications.
5

Spectral sequences for composite functors / Spektralsekvenser för sammansatta funktorer

Erlandsson, Adam January 2022 (has links)
Spectral sequences were developed during the mid-twentieth century as a way of computing (co)homology, and have wide uses in both algebraic topology and algebraic geometry.  Grothendieck introduced in his Tôhoku paper the Grothendieck spectral sequence, which given left exact functors $F$ and $G$ between abelian categories, uses the right-derived functors of $F$ and $G$ as initial data and converges to the right-derived functors of the composition $G\circ F.$  This thesis focuses on instead constructing a spectral sequence that uses the derived functors of $G$ and $G\circ F$ as initial data and converges to the derived functors of $F.$ Our approach takes inspiration from the construction of the Eilenberg-Moore spectral sequence, which given a fibration of topological spaces can calculate the singular cohomology of the fiber from the singular cohomology of the base space and total space. The Eilenberg-Moore spectral sequence can be constructed through the use of differential graded algebras and their bar construction, since this defines a double complex for which the column-wise filtration of the corresponding total complex induces the spectral sequence. The correct analogue of this with respect to composite functors is the bar construction for monads. Specifically, we let $G$ have an exact left adjoint $H$, which makes $G\circ H$ into a monad. Then, we extend our adjunction so that the derived functor $RG$ has left adjoint $RH$ in the corresponding derived categories, making $RG\circ RH$ into a monad. This allows us to apply the bar construction in the derived category, but we show that there emerge issues in obtaining a double complex and subsequent total complex from this construction.  Additionally, we present the essential theory of spectral sequences in general, and of the Serre, Eilenberg-Moore and Grothendieck spectral sequences in particular. / Spektralsekvenser utvecklades under mitten av 1900-talet som ett verktyg för att beräkna (ko)homologi, och har många användningsområden inom både algebraisk topologi och algebraisk geometri. Grothendieck introducerade i sin Tôhoku-artikel Grothendieck-spektralsekvensen, som givet vänsterexakta funktorer $F$ och $G$ mellan abelska kategorier använder de högerderiverade funktorerna av $F$ och $G$ som initialdata och som konvergerar till de högerderiverade funktorerna av kompositionen $G\circ F$. Denna masteruppsats fokuserar på att istället konstruera en spektralsekvens som använder de deriverade funktorerna av $G$ och $G\circ F$ som initialdata och konvergerar till de deriverade funktorerna av $F$. Vår metod tar inspiration från konstruktionen av Eilenberg-Moore-spektralsekvensen, som givet en fibrering av topologiska rum kan beräkna den singulära kohomologin av fibern från den singulära kohomologin av basrummet och totalrummet. Eilenberg-Moore spektralsekvensen kan konstrueras genom användningen av graderade differentialalgebror och deras bar-konstruktion, eftersom detta definierar ett dubbelkomplex vars kolumnvisa filtrering av det resulterande totalkomplexet inducerar spektralsekvensen. Vad gäller kompositioner av funktorer så är den korrekta analogin till detta bar-konstruktionen för monader. Specifikt så låter vi $G$ ha en exakt vänsteradjungerad funktor $H$, vilket gör $G\circ H$ till en monad. Sedan utvidgar vi denna adjunktion sådant att den deriverade funktorn $RG$ har vänsteradjunkt $RH$ i den deriverade kategorin, vilket gör $RG\circ RH$ till en monad. Detta ger oss möjligheten att använda bar-konstruktionen i den deriverade kategorin, men vi visar att det uppstår problem när vi ska definiera ett dubbelkomplex och resulterande totalkomplex från denna konstruktion. Utöver detta så innehåller denna uppsats en genomgång av den viktigaste teorin om spektralsekvenser i allmänhet, och om Serre-, Eilenberg-Moore- och Grothendieck-spektralsekvensen i synnerhet.

Page generated in 0.0648 seconds