Spelling suggestions: "subject:"fibration"" "subject:"calibrations""
1 |
Real Lefschetz fibrationsSalepci, Nermin Kharlamov, Viatcheslav. Finashin, Sergey. January 2007 (has links) (PDF)
Thèse doctorat : Mathématiques : Strasbourg 1 : 2007. / Titre provenant de l'écran-titre. Bibliogr. 4 p. Index.
|
2 |
Homotopie rationnelle des fibres de Serre.Thomas, Jean-Claude, January 1900 (has links)
Th.--Sci. math.--Lille 1, 1980. N°: 473.
|
3 |
A homologia de uma fibração / The homology of a fibrationPagotto, Pablo Gonzalez [UNESP] 30 August 2016 (has links)
Submitted by Pablo Gonzalez Pagotto null (pgp_2008@hotmail.com) on 2016-09-28T16:16:44Z
No. of bitstreams: 1
final.pdf: 1327249 bytes, checksum: 26bc65e3566fd3813a93f271a02744c1 (MD5) / Approved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-09-30T14:43:09Z (GMT) No. of bitstreams: 1
pagotto_pg_me_sjrp.pdf: 1327249 bytes, checksum: 26bc65e3566fd3813a93f271a02744c1 (MD5) / Made available in DSpace on 2016-09-30T14:43:09Z (GMT). No. of bitstreams: 1
pagotto_pg_me_sjrp.pdf: 1327249 bytes, checksum: 26bc65e3566fd3813a93f271a02744c1 (MD5)
Previous issue date: 2016-08-30 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / O objetivo principal deste trabalho é apresentar um estudo sobre Homologia de Espaços Fibrados, baseado no livro Elements of Homotopy Theory de G.W.Whitehead. O conceito de fibração apareceu em torno de 1930 e pode ser visto como uma extensão da teoria de fibrados. Existe uma sequência exata longa que relaciona os grupos de homotopia dos espaços base, total e da fibra de uma fibração. Porém, relacionar os grupos de homologia desses espaços é uma tarefa mais complicada. O caso geral é feito utilizando sequências espectrais. Porém, há casos particulares em que podemos obter relações sem utilizar a maquinaria das sequências espectrais. / The main goal of this work is to present a study on Homology of Fibre Spaces, based on the book of G.W. Whitehead: ``Elements of Homotopy Theory''. The concept of fibration appeared around 1930 and can be seen as an extension of the theory of bundles. There is a long exact sequence that relates the homotopy groups of the total, base and fiber spaces of a fibration. However, relating the homology groups of such spaces is more complicated. The general case is obtained using spectral sequences. Nevertheless there are particular cases where one can obtain such relations without the need of the machinery of spectral sequences. / FAPESP: 2013/22249-0
|
4 |
Fibrations de Lefschetz RéellesSalepci, Nermin 19 October 2007 (has links) (PDF)
Nous étudions les fibrations de Lefschetz réelles. Nous présentons des invariants de fibrations de Lefschetz réelles au dessus de $D^2$ ou $S^2$ n'ayant que des valeurs critiques réelles. Dans le cas où le genre des fibres est égal à 1, nous obtenons un objet combinatoire, appelé le diagramme de collier. En utilisant les diagrammes de collier nous obtenons une classification des fibrations de Lefschetz réelles de genre 1 admettant une section réelle et dont toutes les valeurs critiques sont réelles. On définit les diagrammes de collier raffinés pour les fibrations qui n'admettent pas de section réelle. Grâce aux diagrammes de collier, nous observons l'existence de quelques exemples intéressants.
|
5 |
On The Problem Of Lifting Fibrations On Algebraic SurfacesKaya, Celalettin 01 June 2010 (has links) (PDF)
In this thesis, we first summarize the known results about lifting algebraic surfaces in characteristic p > / 0 to characteristic zero, and then we study lifting fibrations on these surfaces to characteristic zero.
We prove that fibrations on ruled surfaces, the natural fibration on Enriques surfaces of classical type, the induced fibration on K3-surfaces covering these types of Enriques surfaces, and fibrations on certain hyperelliptic and quasi-hyperelliptic surfaces lift. We also obtain some fragmentary results concerning the smooth isotrivial fibrations and the fibrations on surfaces of Kodaira dimension 1.
|
6 |
Lifting Fibrations On Algebraic Surfaces To Characteristic ZeroKaya, Celalettin 01 January 2005 (has links) (PDF)
In this thesis, we study the problem of lifting fibrations on surfaces in characteristic p, to characteristic zero. We restrict ourselves mainly to the case of natural fibrations on surfaces with Kodaira dimension -1 or 0. We determine whether such a fibration lifts to characteristic zero. Then, we try to find the smallest ring over which a lifting is possible. Finally,in some favourable cases, we compare the moduli of liftings of the fibration to the moduli of liftings of the surface under consideration.
|
7 |
Real Lefschetz FibrationsSalepci, Nermin 01 October 2007 (has links) (PDF)
In this thesis, we present real Lefschetz fibrations. We first study real Lefschetz fibrations around a real singular fiber. We obtain a classification of real Lefschetz fibrations around a real singular fiber by a study of monodromy properties of real Lefschetz fibrations. Using this classification, we obtain some invariants, called real Lefschetz chains, of real Lefschetz fibrations which admit only real critical values. We show that in case the fiber genus is greater then 1, the real Lefschetz chains are complete invariants of directed real Lefschetz fibrations with only real critical values. If the genus is 1, we obtain complete invariants by decorating real Lefschetz chains.
For elliptic Lefschetz fibrations we define a combinatorial object which we call necklace diagrams. Using necklace diagrams we obtain a classification of directed elliptic real Lefschetz fibrations which admit a real section and which have only real critical values. We obtain 25 real Lefschetz fibrations which admit a real section and which have 12 critical values all of which are real. We show that among 25 real Lefschetz fibrations, 8 of them are not algebraic. Moreover, using necklace diagrams we show the existence of real elliptic Lefschetz fibrations which can not be written as the fiber sum of two real elliptic Lefschetz fibrations. We define refined necklace diagrams
for real elliptic Lefschetz fibrations without a real section and show that refined necklace diagrams classify real elliptic Lefschetz fibrations which have only real critical values.
|
8 |
On the classification of some automorphisms of K3 surfaces / Sur la classification de certains automorphismes de surfaces K3Tabbaa, Dima al- 07 December 2015 (has links)
Un automorphisme non-symplectique d'ordre fini n sur une surface X de type K3 est un automorphisme σ ∈ Aut(X) qui satisfait σ*(ω) = λω où λ est une racine primitive n-ième de l'unité et ω est le générateur de H2,0(X). Dans cette thèse on s’intéresse aux automorphismes non-symplectiques d'ordre 8 et 16 sur les surfaces K3. Dans un premier temps, nous classifionsles automorphismes non-symplectiques σ d'ordre 8 quand le lieu fixe de sa quatrième puissance σ⁴ contient une courbe de genre positif, on montre plus précisément que le genre de la courbe fixée par σ est au plus un. Ensuite nous étudions le cas où le lieu fixe de σ contient au moins une courbe et toutes les courbes fixées par sa quatrième puissance σ⁴ sont rationnelles. Enfin nous étudions le cas où σ et son carré σ² agissent trivialement sur le groupe de Néron-Severi. Nous classifions toutes les possibilités pour le lieu fixe de σ et de son carré σ² dans ces trois cas. Nous obtenons la classification complète pour les automorphismes non-symplectiques d'ordre 8 sur les surfaces K3. Dans la deuxième partie de la thèse, nous classifions les surfaces K3 avec automorphisme non-symplectique d'ordre 16 en toute généralité. Nous montrons que le lieu fixe contient seulement courbes rationnelles et points isolés et nous classifions complètement les sept configurations possibles. Si le groupe de Néron-Severi a rang 6, alors il y a deux possibilités et si son rang est 14, il y a cinq possibilités. En particulier si l'action de l'automorphisme est trivial sur le groupe de Néron-Severi, alors nous montrons que son rang est six. Enfin, nous construisons des exemples qui correspondent à plusieurs cas dans la classification des automorphismes non-symplectiques d'ordre 8 et nous donnons des exemples pour chaque cas dans la classification des automorphismes non-symplectiques d'ordre 16. / A non-symplectic automorphism of finite order n on a K3 surface X is an automorphism σ ∈ Aut(X) that satisfies σ*(ω) = λω where λ is a primitive n−root of the unity and ω is a generator of H2,0(X). In this thesis we study the non-symplectic automorphisms of order 8 and 16 on K3 surfaces. First we classify the non-symplectic automorphisms σ of order eight when the fixed locus of its fourth power σ⁴ contains a curve of positive genus, we show more precisely that the genus of the fixed curve by σ is at most one. Then we study the case of the fixed locus of σ that contains at least a curve and all the curves fixed by its fourth power σ⁴ are rational. Finally we study the case when σ and its square σ² act trivially on the Néron-Severi group. We classify all the possibilities for the fixed locus of σ and σ² in these three cases. We obtain a complete classifiction for the non-symplectic automorphisms of order 8 on a K3 surfaces.In the second part of the thesis, we classify K3 surfaces with non-symplectic automorphism of order 16 in full generality. We show that the fixed locus contains only rational curves and isolated points and we completely classify the seven possible configurations. If the Néron-Severi group has rank 6, there are two possibilities and if its rank is 14, there are five possibilities. In particular ifthe action of the automorphism is trivial on the Néron-Severi group, then we show that its rank is six.Finally, we construct several examples corresponding to several cases in the classification of the non-symplectic automorphisms of order 8 and we give an example for each case in the classification of the non-symplectic automorphisms of order 16.
|
9 |
Irreducible holomorphic symplectic manifolds and monodromy operatorsOnorati, Claudio January 2018 (has links)
One of the most important tools to study the geometry of irreducible holomorphic symplectic manifolds is the monodromy group. The first part of this dissertation concerns the construction and studyof monodromy operators on irreducible holomorphic symplectic manifolds which are deformation equivalent to the 10-dimensional example constructed by O'Grady. The second part uses the knowledge of the monodromy group to compute the number of connected components of moduli spaces of bothmarked and polarised irreducible holomorphic symplectic manifolds which are deformationequivalent to generalised Kummer varieties.
|
10 |
Examples of Volume-Preserving Great Circle Flows of S3Haskett, Ryan 01 May 2000 (has links)
This summer Herman Gluck and Weiqing Gu proved the last step in a process that took conformal maps between two complex spaces and related them to Volume Preserving Great Circle Fibrations of S3. These fibrations, which are non-intersecting flows, break down under certain conditions. We obtained the fibrations by applying the process to different conformal maps then calculated the angles where they intersect. This paper centers around the developments in the method for converting the conformal maps and finding the critical angles. Finally, the examples are included in their various stages of completeness.
|
Page generated in 0.0992 seconds