Spelling suggestions: "subject:"fibration"" "subject:"calibrations""
11 |
On The Arithmetic Of Fibered SurfacesKaba, Mustafa Devrim 01 September 2011 (has links) (PDF)
In the first three chapters of this thesis we study two conjectures relating arithmetic with geometry, namely Tate and Lang&rsquo / s conjectures, for a certain class of algebraic surfaces. The surfaces we are interested in are assumed to be defined over a number field, have irregularity two and admit a genus two fibration over an elliptic curve. In the final chapter of the thesis we prove the isomorphism of the Picard motives of an arbitrary variety and its Albanese variety.
|
12 |
The Moduli Of Surfaces Admitting Genus Two Fibrations Over Elliptic CurvesKaradogan, Gulay 01 May 2005 (has links) (PDF)
In this thesis, we study the structure, deformations and the moduli spaces of complex projective surfaces admitting genus two fibrations over elliptic curves. We observe that, a surface admitting a smooth fibration as above is elliptic and we employ results on the moduli of polarized elliptic surfaces, to construct moduli spaces of these smooth fibrations. In the case of nonsmooth fibrations, we relate the moduli spaces to the Hurwitz schemes H(1,X(d),n) of morphisms of degree n from elliptic curves to the modular curve X(d), d& / #8804 / 3. Ultimately, we show that the moduli spaces, considered, are fiber spaces over the affine line A¹ / with fibers determined by the components of H (1,X(d),n).
|
13 |
Pinceaux réels en courbes de genre 2 / Real Pencils of curves of genus twoMoulahi, Samir 14 December 2015 (has links)
Soit π : X→ D un pinceau réel en courbes de genre $2$. L'objectif de cette thèse est de donner une classification partielle des fibres singulières possibles ; je donne les types de configurations réelles des fibres singulières et je détermine la topologie des fibres voisines. Je donne aussi les invariants déterminant d'une manière unique la classe réelle de tels pinceaux. / Let π : X→ D be a real pencil of curves of genus two. The goal of this thesis is to give a partial classification of possible singular fibers; we give the types of real configurations of singular fibers and we determine the topology of neighbors fibers. Also we give the invariants determining in a unique way the real class of such pencils
|
14 |
Les fibrations de Grothendieck et l’algèbre homotopique / Grothendieck fibrations and homotopical algebraBalzin, Eduard 20 June 2016 (has links)
Cette thèse est consacrée à l'étude des familles de catégories munies d'une structure homotopique. Les résultats principaux compris dans cette oeuvre sont : i. Une généralisation de la structure de modèles de Reedy, qui dans ce travail est construite pour les sections d'une famille convenable des catégories de modèles sur une catégorie de Reedy. À la différence des considérations précédentes, par exemple celles de Hirschowitz-Simpson, nous exigeons aussi peu de propriétés de la famille que possible, pour que notre résultat puisse être appliqué dans les situations où les foncteurs de transition ne sont pas linéaires. ii. Une extension du formalisme de Segal pour les structures algébriques, dans le territoire des catégories monoïdales sur une catégorie d'opérateurs au sens de Barwick. Pour ce faire, nous présentons les structures monoidales comme certaines opfibrations de Grotendieck, et introduisons les sections dérivées des opfibrations en utilisant les remplacements simpliciaux de Bousfield-Kan. Notre résultat concernant la structure de Reedy nous permet alors de travailler avec les sections dérivées. iii. Une preuve d'un certain résultat de la descente homotopique, qui donne des conditions suffisantes pour que le foncteur d'image inverse soit une équivalence entre catégories de sections dérivées au sens adapté. L'on montre ce résultat pour les foncteurs qui satisfont une propriété technique du genre ``Théorème A de Quillen'', les foncteurs que nous appelons résolutions. Un exemple d'une résolution est donné par un foncteur de la catégorie des arbres planaires stables de Kontsevich-Soibelman, au groupoïde fondamental stratifié de l'espace de Ran du $2$-disque / This thesis is devoted to the study of families of categories equipped with a homotopical structure. The principal results comprising this work are:i. A generalisation of the Reedy model structure, which, in this work, is constructed for sections of a suitable family of model categories over a Reedy category. Unlike previous considerations, such as Hirschowitz-Simpson, we require as little as possible from the family, so that our result may be applied in situations when the transition functors in the family are non-linear in nature. ii. An extension of Segal formalism for algebraic structures to the setting of monoidal categories over an operator category in the sense of Barwick. We do this by treating monoidal structures using the language of Grothendieck opfibrations, and introduce derived sections of the latter using the simplicial replacements of Bousfield-Kan. Our Reedy structure result then permits to work with derived sections. iii. A proof of a certain homotopy descent result, which gives sufficient conditions on when an inverse image functor is an equivalence between suitable categories of derived sections. We show this result for functors which satisfy a technical ``Quillen Theorem A''-type property, called resolutions. One example of a resolution is given by a functor from the category of planar marked trees of Kontsevich-Soibelman, to the stratified fundamental groupoid of the Ran space of the $2$-disc. An application of the homotopy descent result to this functor gives us a new proof of Deligne conjecture, providing an alternative to the use of operads
|
15 |
Einstein homogeneous Riemannian fibrationsAraujo, Fatima January 2008 (has links)
This thesis is dedicated to the study of the existence of homogeneous Einstein metrics on the total space of homogeneous fibrations such that the fibers are totally geodesic manifolds. We obtain the Ricci curvature of an invariant metric with totally geodesic fibers and some necessary conditions for the existence of Einstein metrics with totally geodesic fibers in terms of Casimir operators. Some particular cases are studied, for instance, for normal base or fiber, symmetric fiber, Einstein base or fiber, for which the Einstein equations are manageable. We investigate the existence of such Einstein metrics for invariant bisymmetric fibrations of maximal rank, i.e., when both the base and the fiber are symmetric spaces and the base is an isotropy irreducible space of maximal rank. We find this way new Einstein metrics. For such spaces we describe explicitly the isotropy representation in terms subsets of roots and compute the eigenvalues of the Casimir operators of the fiber along the horizontal direction. Results for compact simply connected 4-symmetric spaces of maximal rank follow from this. Also, new invariant Einstein metrics are found on Kowalski n-symmetric spaces.
|
16 |
Revêtements finis d'une variété hyperbolique de dimension trois et fibres virtuelles.Renard, Claire 02 November 2011 (has links) (PDF)
Dans le cadre des variétés hyperboliques, Thurston a conjecturé que toute variété hyperbolique de dimension trois connexe, orientable, complète et de volume fini possède un revêtement fini qui est fibré sur le cercle. En lien avec cette conjecture, le résultat principal de cette thèse donne des conditions suffisantes pour qu'un revêtement fini d'une variété hyperbolique M de dimension trois fibre sur le cercle, ou du moins contienne une fibre virtuelle. Soit F une surface close, orientable, plongée et proche d'une surface minimale, dans un revêtement fini M' de M et séparant M' en corps en anses. La condition pour qu'il existe une fibre virtuelle dans le complémentaire de F est donnée par une inégalité faisant intervenir le degré d du revêtement, le genre g de la surface, le nombre q de corps en anses et une constante k ne dépendant que du volume et du rayon d'injectivité de M. En appliquant ce théorème à un scindement de Heegaard de genre minimal du revêtement M', on obtient une version sous-logarithmique des conjectures de Lackenby sur le gradient de Heegaard et le gradient de Heegaard fort. Le théorème principal s'applique également dans le cadre d'une décomposition circulaire associée à une classe d'homologie non triviale. Nous obtenons par exemple des conditions suffisantes pour qu'une classe d'homologie non triviale de M corresponde à une fibration sur le cercle. Des méthodes analogues permettent aussi de donner une condition suffisante pour qu'une surface incompressible plongée dans M soit une fibre virtuelle. Enfin, nous donnons un critère pour que dans une tour de revêtements finis le premier nombre de Betti tende vers l'infini.
|
17 |
Sur l'effondrement à l'infini des variétés asymptotiquement plates.Minerbe, Vincent 07 December 2007 (has links) (PDF)
Cette thèse concerne la géométrie asymptotique de variétés riemanniennes complètes non compactes, dont la courbure tend vers zéro à l'infini, assez vite. Afin de compléter des travaux déjà existants, on s'attache à comprendre le cas où la croissance du volume est non maximale, c'est-à-dire strictement moins rapide que dans l'espace euclidien de même dimension. Dans ce contexte, on prouve tout d'abord une inégalité de Sobolev à poids et une inégalité de Hardy, qui permettent de généraliser nombre de résultats établis quand la croissance du volume est maximale. On obtient en particulier des résultats de rigidité et de finitude de la topologie pour des variétés Ricci plates et asymptotiquement plates. On obtient ensuite un résultat de structure asymptotique pour une classe d'instantons gravitationnels : typiquement, ceux qui ont une croissance du volume cubique sont asymptotes à des fibrations en cercles au-dessus d'une variété asymptotiquement localement euclidienne .
|
18 |
Sequências espectrais e aplicações aos cálculos de cohomologias de espaços fibradosSouza, Beethoven Adriano de [UNESP] 27 January 2009 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:56Z (GMT). No. of bitstreams: 0
Previous issue date: 2009-01-27Bitstream added on 2014-06-13T18:06:57Z : No. of bitstreams: 1
souza_ba_me_sjrp.pdf: 780089 bytes, checksum: 497c7f887fe3a317fcd7ce438ebf546b (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Este trabalho tem como objetivo principal o cálculo dos grupos de Cohomologia de alguns Grupos Clássicos como o Grupo das Rotações do Espaço Euclidiano Rn (SO(n)), o Grupo Unitário (U(n)), o Grupo Especial Unitário (SU(n)) e o Grupo Simplético (Sp(n)). Além disso calcularemos também o grupo de Cohomologia do Espaço Projetivo Complexo (CP(n)). Para esses cálculos usaremos sequências espectrais e o Teorema de Serre para Cohomologia. / The main purpose of this work is to calculate the cohomology groups of some classical groups as the rotation groups of the euclidean space Rn, SO(n), the unitary group U(n), your special unitary subgroup SU(n) and the symplectic group Sp(n). Moreover we also calculate the cohomology groups of complex projective space CP(n). For these calculus we will use spectral sequences and the Serre's Theorem for Cohomology.
|
19 |
Birational geometry of Fano fibrationsKrylov, Igor January 2017 (has links)
An algebraic variety is called rationally connected if two generic points can be connected by a curve isomorphic to the projective line. The output of the minimal model program applied to rationally connected variety is variety admitting Mori fiber spaces over a rationally connected base. In this thesis we study the birational geometry of a particular class of rationally connected Mori fiber spaces: Fano fibrations over the projective line. We construct examples of Fano fibrations with a unique Mori fiber space in their birational classes. We prove that these examples are not birational to varieties of Fano type, thus answering the question of Cascini and Gongyo. That is we prove that the classes of rationally connected varieties and varieties of Fano type are not birationally equivalent. To construct the examples we use the techniques of birational rigidity. A Mori fiber space is called birationally rigid if there is a unique Mori fiber space structure in its birational class. The birational rigidity of smooth varieties admitting a del Pezzo fibration of degrees 1 and 2 is a well studied question. Unfortunately it is not enough to study smooth del Pezzo fibrations as there are fibrations which do not have smooth or even smoothable minimal models. In the case of fibrations of degree 2 we know that there is a minimal model with 2-Gorenstein singularities. These singularities are degenerations of the simplest terminal quotient singularity: singular points of the type 1/2(1,1,1). We give first examples of birationally rigid del Pezzo fibrations with 2-Gorenstein singularities. We then apply this result to study finite subgroups of the Cremona group of rank three. We then study the birational geometry of Fano fibrations from a different side. Using the reduction to characteristic 2 method we prove that double covers of Pn-bundles over Pm branched over a divisor of sufficiently high degree are not stably rational. For a del Pezzo fibration Y→P1 of degree 2 such that X is smooth there is a double cover Y→ X, where X is a P2-bundle over P1. In this case a stronger result holds: a very general Y with Pic(Y)≅Z⊕Z is not stably rational. We discuss the proof of this statement.
|
20 |
Sequências espectrais e aplicações aos cálculos de cohomologias de espaços fibrados /Souza, Beethoven Adriano de. January 2009 (has links)
Orientador: João Peres Vieira / Banca: Gorete Carreira Andrade / Banca: Dirceu Penteado / Resumo: Este trabalho tem como objetivo principal o cálculo dos grupos de Cohomologia de alguns Grupos Clássicos como o Grupo das Rotações do Espaço Euclidiano Rn (SO(n)), o Grupo Unitário (U(n)), o Grupo Especial Unitário (SU(n)) e o Grupo Simplético (Sp(n)). Além disso calcularemos também o grupo de Cohomologia do Espaço Projetivo Complexo (CP(n)). Para esses cálculos usaremos sequências espectrais e o Teorema de Serre para Cohomologia. / Abstract: The main purpose of this work is to calculate the cohomology groups of some classical groups as the rotation groups of the euclidean space Rn, SO(n), the unitary group U(n), your special unitary subgroup SU(n) and the symplectic group Sp(n). Moreover we also calculate the cohomology groups of complex projective space CP(n). For these calculus we will use spectral sequences and the Serre's Theorem for Cohomology. / Mestre
|
Page generated in 0.1113 seconds