Spelling suggestions: "subject:"descoberta"" "subject:"descobertas""
141 |
O conceito de descoberta científica: os raios de Roentgen como estudo de caso / The concept of scientific discovery: the Roentgen rays as a case studyCestari Junior, Decio Hermes 17 September 2015 (has links)
Made available in DSpace on 2016-04-28T14:16:23Z (GMT). No. of bitstreams: 1
Decio Hermes Cestari Junior.pdf: 1836314 bytes, checksum: e7d63f5b7f7450761733426e00c19a54 (MD5)
Previous issue date: 2015-09-17 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This work aims to analyse the concept of discovery in the nineteenth century by exploring the behaviour of scientists and the common people at that time. We have started by studying original documents on X rays published by Wilhelm Conrad Roentgen. We have found that some evidences proving that scientists claim the discoveries to themselves. This claim was important because it led them to achieve an elevated scientific recognition. To develop this work we have considered different scientific approaches in order to understand the behaviour of members of scientific community. Therefore, the fields of philosophy of science and sociology of science were also applied to support some parts of this research. By analysing publications of that time it was possible to understand the concept of scientific discovery among common people during the nineteenth century. In the last part of our research we have analysed the concept of science currently used in popular science books. We could find misconceptions such as trying to explain science from discoveries or describing experiments as if they were crucial, that is, the story of winners. It's possible to note that some of those misconceptions found in the common sense of the nineteenth century can also be found in the current popular science books / Este trabalho tem por objetivo analisar o conceito de descoberta científica no final do século XIX a partir do estudo do comportamento dos cientistas e da sociedade da época. Iniciamos nosso trabalho com a análise dos documentos originais publicados por Wilhelm Conrad Roentgen, nos quais encontramos evidências de que o cientista reivindica prioridade sobre a descoberta. Essa prioridade é importante para que o cientista receba o reconhecimento de seus pares. Para desenvolver este trabalho foi necessário analisar o comportamento dos membros da comunidade científica a partir de diferentes perspectivas, para isso, buscamos referências em outros campos do conhecimento, como a filosofia da ciência e a sociologia da ciência. Através da análise dos periódicos do final do século XIX e início do século XX, foi possível compreender a concepção de descoberta predominante no senso comum da sociedade daquele período. Na parte final deste trabalho analisamos a concepção de descoberta científica utilizada nos livros de divulgação científica atuais. Encontramos abordagens que procuram explicar a ciência a partir das descobertas científicas ou de experimentos considerados definitivos, ou seja, a história dos vencedores. Observamos que é possível encontrar nos atuais livros de divulgação científica concepções de descoberta semelhantes às encontradas no senso comum do século XIX
|
142 |
Categorização de imagens médicas baseada em transformada wavelet e mapas auto-organizáveis. / Medical image categorization based in wavelet transform and self-organizing maps.Silva, Leandro Augusto da 25 March 2009 (has links)
Nos tempos atuais, as imagens médicas são fonte de dados fundamentais na medicina moderna. As imagens armazenadas em uma base de dados de acordo com as respectivas categorias são um importante passo para aplicações como mineração de dados e recuperação de imagens por conteúdo. Estas aplicações podem apoiar médicos e estudantes na decisão de diagnóstico, permitir pesquisas e ser usadas como material didático. O trabalho propõe o uso de Mapas Auto-Organizáveis (SOM) e TransformadaWavelet combinada com momentos de Hu para a categorização de imagens médicas. Para tanto, são realizados experimentos para definição do tamanho do mapa SOM, uso do mesmo na categorização, definição da melhor família wavelet e nível de decomposição, sumarização dos coeficientes wavelets descartados por momento de Hu e experimentos comparativos com outras abordagens de categorização. Além dos experimentos de classificação comparativos em termos de taxa de acerto, é apresentada uma proposta de contribuição para uso do Mapa SOM na classificação. Nesta proposta, os resultados de classificação e o tempo de recurso computacional despendido pelo Mapa SOM mostram-se eficientes, quando comparados aos resultados e tempo apresentados pelo tradicional classificador K vizinhos mais próximos. / Nowadays, images are fundamental data source in modern medicine. The images stored in a database according with categories are an important step for data mining and contentbased image retrieval. They can support doctors and students in diagnostic decisions and provide research and didactic material. This work addresses the use of Self-Organizing Map (SOM) and discrete wavelet transform joint with Hus moments to medical image categorization. Furthermore, extensive experiments to define map size were done, employing the map in categorization, the best wavelet family and level of decomposition were defined, the coefficient discarded was summarized by Hus moments and contrastive studies with another successfull approach of categorization were done. Moreover, an approach to use SOM map in categorization is addressed, in which the SOM map for classification carried on better performance and computational time than traditional K nearest neighbor algorithm.
|
143 |
Categorização de imagens médicas baseada em transformada wavelet e mapas auto-organizáveis. / Medical image categorization based in wavelet transform and self-organizing maps.Leandro Augusto da Silva 25 March 2009 (has links)
Nos tempos atuais, as imagens médicas são fonte de dados fundamentais na medicina moderna. As imagens armazenadas em uma base de dados de acordo com as respectivas categorias são um importante passo para aplicações como mineração de dados e recuperação de imagens por conteúdo. Estas aplicações podem apoiar médicos e estudantes na decisão de diagnóstico, permitir pesquisas e ser usadas como material didático. O trabalho propõe o uso de Mapas Auto-Organizáveis (SOM) e TransformadaWavelet combinada com momentos de Hu para a categorização de imagens médicas. Para tanto, são realizados experimentos para definição do tamanho do mapa SOM, uso do mesmo na categorização, definição da melhor família wavelet e nível de decomposição, sumarização dos coeficientes wavelets descartados por momento de Hu e experimentos comparativos com outras abordagens de categorização. Além dos experimentos de classificação comparativos em termos de taxa de acerto, é apresentada uma proposta de contribuição para uso do Mapa SOM na classificação. Nesta proposta, os resultados de classificação e o tempo de recurso computacional despendido pelo Mapa SOM mostram-se eficientes, quando comparados aos resultados e tempo apresentados pelo tradicional classificador K vizinhos mais próximos. / Nowadays, images are fundamental data source in modern medicine. The images stored in a database according with categories are an important step for data mining and contentbased image retrieval. They can support doctors and students in diagnostic decisions and provide research and didactic material. This work addresses the use of Self-Organizing Map (SOM) and discrete wavelet transform joint with Hus moments to medical image categorization. Furthermore, extensive experiments to define map size were done, employing the map in categorization, the best wavelet family and level of decomposition were defined, the coefficient discarded was summarized by Hus moments and contrastive studies with another successfull approach of categorization were done. Moreover, an approach to use SOM map in categorization is addressed, in which the SOM map for classification carried on better performance and computational time than traditional K nearest neighbor algorithm.
|
144 |
Arcabouço de classificação e escolha de algoritmos de descoberta de processos / Classification and selection of process discovery algorithms frameworkRezende, Caio Appelt 03 May 2017 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2017-07-24T11:15:23Z
No. of bitstreams: 2
Dissertação - Caio Appelt Rezende - 2017.pdf: 1362955 bytes, checksum: b87d99aa29bcdf87d151fb1d32bb57ee (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-07-24T11:15:36Z (GMT) No. of bitstreams: 2
Dissertação - Caio Appelt Rezende - 2017.pdf: 1362955 bytes, checksum: b87d99aa29bcdf87d151fb1d32bb57ee (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-07-24T11:15:36Z (GMT). No. of bitstreams: 2
Dissertação - Caio Appelt Rezende - 2017.pdf: 1362955 bytes, checksum: b87d99aa29bcdf87d151fb1d32bb57ee (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2017-05-03 / Process Mining is a recent area of research and is composed of techniques that allow the analysis and extraction of knowledge from the logs of the business processes obtained from Management Information Systems (MIS). The analyzes can be classified into three types: Process Discovery, Conformance Check and Process Improvement. With the current growth not only of quantity, but also of the types of algorithms that seek to fulfill the objectives of Process Mining, a classification that takes into account the performance of the algorithm in the various real situations of its application becomes important. The Evaluation and Comparison of the algorithms from the repository data could be done through the application of Quality Metrics or Machine Learning Techniques. This work presents a proposal of a set of Quality Metrics to allow the classification, evaluation and comparison of Process Discovery algorithms. The proposal is based on the review of algorithms and their families; the possible performance characteristics, that can be applied to any type of algorithm being tested; and in simulations of business process patterns. The results obtained by the work are promising in the sense of creating the conceptual basis and a methodology for future research to allow the construction of a framework for Evaluation and Comparison of new algorithms. / A Mineração de Processos (Process Mining) é uma área de pesquisa recente e é composta por técnicas que permitem a análise e a extração de conhecimento a partir dos registros de eventos (logs) dos processos de negócios obtidos de Sistemas de Informação Gerenciais (SIG). As análises podem ser classificadas em três tipos: Descoberta de Processos, Checagem da Conformidade e Melhoria de Processos. Com o atual crescimento não apenas da quantidade, mas também dos tipos de algoritmos que procuram cumprir os objetivos da Mineração de Processos, uma classificação que leve em consideração a performance do algoritmo nas diversas situações reais de sua aplicação se torna importante. A Avaliação e a Comparação dos algoritmos a partir dos dados do repositório poderiam ser feitas através da aplicação de Métricas de Qualidade ou Técnicas de Aprendizado de Máquina. Este trabalho apresenta uma proposta de um conjunto de Métricas de Qualidade que tem como objetivo permitir a classificação, avaliação e comparação de algoritmos de Descoberta de Processos. A proposta foi construída com base na revisão dos algoritmos e suas famílias; no levantamento das possíveis características de performance, que podem ser aplicadas a qualquer tipo de algoritmo sendo testado; e em simulações de registros de eventos de padrões de processos de negócio. Os resultados obtidos pelo trabalho são promissores no sentido de criar a base conceitual e uma metodologia para que futuras pesquisas permitam a construção de um arcabouço (framework) de Avaliação e Comparação de novos algoritmos.
|
145 |
Minerador WEB: um estudo sobre mecanismos de descoberta de informações na WEB. / Minerador WEB: a study on mechanisms of discovery of information in the WEB.Wagner Toscano 10 July 2003 (has links)
A Web (WWW - World Wide Web) possui uma grande quantidade e variedade de informações. Isso representa um grande atrativo para que as pessoas busquem alguma informação desejada na Web. Por outo lado, dessa grande quantidade de informações resulta o problema fundamental de como descobrir, de uma maneira eficaz, se a informação desejada está presente na Web e como chegar até ela. A existência de um conjunto de informações que não se permitem acessar com facilidade ou que o acesso é desprovido de ferramentas eficazes de busca da informção, inviabiliza sua utilização. Soma-se às dificuldades no processo de pesquisa, a falta de estrutura das informações da Web que dificulta a aplicação de processos na busca da informação. Neste trabalho é apresentado um estudo de técnicas alternativas de busca da informação, pela aplicação de diversos conceitos relacionados à recuperação da informação e à representação do conhecimento. Mais especificamente, os objetivos são analisar a eficiência resultante da utilização de técnicas complementares de busca da informação, em particular mecanismos de extração de informações a partir de trechos explícitos nos documentos HTML e o uso do método de Naive Bayes na classificação de sites, e analisar a eficácia de um processo de armazenamento de informações extraídas da Web numa base de conhecimento (descrita em lógica de primeira ordem) que, aliada a um conhecimento de fundo, permita respomder a consultas mais complexas que as possíveis por meio do uso de expressões baseadas em palavras-chave e conectivos lógicos. / The World Wide Web (Web) has a huge amount and a large diversity of informations. There is a big appeal to people navigate on the Web to search for a desired information. On the other hand, due to this huge amount of data, we are faced with the fundamental problems of how to discover and how to reach the desired information in a efficient way. If there is no efficient mechanisms to find informations, the use of the Web as a useful source of information becomes very restrictive. Another important problem to overcome is the lack of a regular structure of the information in the Web, making difficult the use of usual information search methods. In this work it is presented a study of alternative techniques for information search. Several concepts of information retrieval and knowledge representation are applied. A primary goal is to analyse the efficiency of information retrieval methods using analysis of extensional information and probabilistic methods like Naive Bayes to classify sites among a pre-defined classes of sites.Another goal is to design a logic based knowledhe base, in order to enable a user to apply more complex queries than queries based simply on expressions using keywouds and logical connectives
|
146 |
Análise de agrupamentos baseada na topologia dos dados e em mapas auto-organizáveis. / Data clustering based on data topology and self organizing-maps.Clodis Boscarioli 16 May 2008 (has links)
Cada vez mais, na conjuntura das grandes tomadas de decisões, a análise de dados massivamente armazenados se torna uma necessidade das mais variadas áreas de conhecimento. A análise de dados envolve a realização de diferentes tarefas, que podem ser realizadas por diferentes técnicas e estratégias como análise de agrupamento de dados. Esta pesquisa enfatiza a realização da tarefa de análise de agrupamento de dados (Data Clustering) usando SOM (Self-Organizing Maps) como principal artefato. SOM é uma rede neural artificial baseada em aprendizado competitivo e não-supervisionado, o que significa que o treinamento é inteiramente guiado pelos dados e que os neurônios do mapa competem entre si. Essa rede neural possui a habilidade de formar mapeamentos que quantizam os dados, preservando a sua topologia. Este trabalho introduz uma nova metodologia de análise de agrupamentos a partir de SOM, que considera o mapa topológico gerado por ele e a topologia dos dados no processo de agrupamento. Uma análise experimental e comparativa é apresentada, evidenciando a potencialidade da proposta, destacando, por fim, as principais contribuições do trabalho. / More than ever, in environment of large decision making, the analysis of data stored massively becomes a real need in almost all knowledge areas. The data analyzing process covers the performing of different tasks that can be executed for different techniques and strategies as the data clustering analysis. This research is focused on the analysis task of data groups, called Data Clustering using Self Organizing Maps (SOM) as principal artifact. SOM is an artificial neural network based on competitive and unsupervised learning, what means that its training is entirely driven by the data, such the neurons of the map compete themselves for doing it. This neural network has the ability to build the mapping task that quantifies the source data, but preserving the topology. This work introduces a new clustering analysis methodology based on SOM, considering the topological map produced by it and also the topology of the data obtained in the clustering process. The experimental and comparative analysis are also presented to demonstrate the potential of the proposal, highlighting at the end the mainly contributions of the work.
|
147 |
Visualização como suporte à extração e exploração de regras de associação / Vusualization as support to the extraction and exploration of association rulesClaudio Haruo Yamamoto 17 April 2009 (has links)
Desde a definção do problema de obtenção de regras de associação, vários algoritmos eficientes foram introduzidos para tratá-lo. Entretanto, ainda hoje o problema apresenta várias dificuldades práticas para os mineradores, como a determinação de limiares adequados de suporte mínimo e confiança mínima, a manipulação de grandes conjuntos de regras, e a compreensão de regras (especialmente aquelas contendo muitos itens). Para tratar estes problemas, pesquisadores têm investigado a aplicação de técnicas interativas, sumarização (de conjuntos de regras) e representações visuais. Entretanto, nenhuma abordagem na qual os usuários podem entender e controlar o processo por meio da interação com o algoritmo analítico ao longo de sua execução foi introduzida. Neste trabalho, é introduzida uma abordagem interativa para extração e exploração de regras de associação que insere o usuário no processo por meio de: execução interativa do Apriori ; seleção interativa de itemsets freqüentes; extração de regras baseada em itemsets e orientada por agrupamentos de itemsets similares; e exploração de regras aos pares. Para validar a abordagem, foram realizados diversos estudos, apoiados pelo Sistema \'I IND.2\' E, com o objetivo de: comparar a abordagem interativa, sob diversos aspectos, com uma abordagem convencional de obtenção de regras de associação; avaliar o efeito de variar alguns parâmetros do processo nos resultados finais; e mostrar a aplicação dos recursos oferecidos em situações reais e com usuários reais. Os resultados indicam que a abordagem apresentada é adequada, tanto em cenários exploratórios quanto em cenários em que há um direcionamento inicial para o processo, à execução de certas tarefas de extração de regras de associação, pois: provém recursos capazes de evitar execuções inteiras do algoritmo antes que os resultados sejam analisados; gera conjuntos de regras mais compactos; preserva a cobertura de itemsets; favorece a reformulação de tarefas ou a formulação de novas tarefas; e provê meios para comparação visual de regras, aumentando o poder de análise do minerador / Since the definition of the association rule mining problem, many efficient algorithms have been introduced to deal with it. However, the problem still presents many practical difficulties to the miners, such as the determination of suitable minimum support and minimum confidence thresholds, manipulation of large rule sets, and comprehension of rules (specially those containing many items). In order to deal with these problems, researchers have been investigating the application of interactive techniques, sumarization (of rule sets) and visual representations. Nonetheless, no approach in which users can understand and control the process through interaction with the analytical algorithm along its execution has been introduced. We introduce an interactive approach to extract and explore association rules that inserts the user into the process through: interactive execution of the Apriori ; interactive selection of frequent itemsets; itemset-based and cluster-oriented extraction of rules; and pairwise exploration of rules. To validate the approach, several studies have been conducted, supported by the \'I IND.2\' E System, aiming at: comparing the interactive approach, under several aspects, with a conventional approach to obtain association rules; evaluate the effect of different execution parameters in the final results; and illustrate its application in real situations and with real users. Results of these studies indicate that the approach is adequate, both in exploratory scenarios and in scenarios in which there is an initial guidance for the process, to the execution of certain association rule extraction tasks, because: it provides resources to avoid complete algorithm executions before results are analyzed; generates more compact rule sets for exploration; preserves rule diversity; favors the reformulation of tasks; and provides support for rule comparison, enhancing analysis capability for miners
|
148 |
Regras de associação aplicadas aos filtros de mensagens e canais de informação do projeto direto / Association rules applied to messages filters and information channel in the direto environmentFrighetto, Michele January 2003 (has links)
Neste trabalho é apresentado um breve estudo sobre o processo de descoberta de conhecimento em banco de dados, com enfoque na etapa de mineração de dados através de regras de associação. Propostas por Agrawal em 1993, num estudo chamado análise de cesta de mercado, as regras de associação representam que com um certo grau de suporte e confiança um conjunto de itens pode estar presente numa transação visto que outro conjunto está presente. A necessidade de análise semelhante às realizadas por Agrawal surgiu em outros campos e estas foram estendidas a outras aplicações. Neste, são apresentadas as principais variações sobre o tema regras de associação encontradas na literatura. É proposta a mineração de dados através de regras de associação sobre filtros de mensagens e canais de informação do software de catálogo, agenda e correio eletrônico Direto. Para as pesquisas são utilizadas três ferramentas: Intelligent Miner, CBA e Magnus Opus. Elas foram aplicadas sobre uma lista de discussão da Linguagem Java, pois o projeto Direto ainda não possui mensagens públicas. As ferramentas possuem características distintas: o Intelligent Miner permite a definição de hierarquias sobre os dados que serão minerados; o Magnus Opus trabalha com diversos filtros e com a definição de intervalos para o tratamento de campos numéricos; o CBA permite que sejam especificados suportes múltiplos para os itens. / This work presents a brief review about knowledge discovery in database having association rules as the data mining process. Association rules were proposed by Agrawal in 1993 in a basket data analysis. Association rules have been extended to other applications because there is a necessity for similar Agrawal’s analysis in different domains. Here are presented some variations proposed in the literature about association rules along with the main algorithms. This work proposes the use of association rules over message filters and information channels from the Direto, which is a catalog, schedule and e-mail software. Three data mining tools were used: Intelligent Miner, CBA and Magnus Opus. They were applied over a Java discussion list because Direto project does not have public messages. Each tool has distinct features: Intelligent Miner allows to define a hierarchy over the data that will be mined; Magnus Opus works with many filters over the data and permits to define ranges over numeric fields and CBA allows to specify multiple minimum support over the items.
|
149 |
Aplicação de algoritmos de agrupamento para descoberta de padrões de defeito em software JavaScript / Application of clustering algorithms for discovering bug patterns in JavaScript softwareCharles Mendes de Macedo 26 October 2018 (has links)
As aplicações desenvolvidas com a linguagem JavaScript, vêm aumentando a cada dia, não somente aquelas na web (client-side), como também as aplicações executadas no servidor (server-side) e em dispositivos móveis (mobile). Neste contexto, a existência de ferramentas para identicação de defeitos e code smells é fundamental, para auxiliar desenvolvedores durante a evoluçãp destas aplicações. A maioria dessas ferramentas utiliza uma lista de defeitos predenidos que são descobertos a partir da observação das melhores práticas de programação e a intuição do desenvolvedor. Para melhorar essas ferramentas, a descoberta automática de defeitos e code smells é importante, pois permite identicar quais ocorrem realmente na prática e de forma frequente. Uma ferramenta que implementa uma estratégia semiautomática para descobrir padrões de defeitos através de agrupamentos das mudanças realizadas no decorrer do desenvolvimento do projeto é a ferramenta BugAID. O objetivo deste trabalho é contribuir nessa ferramenta estendendo-a com melhorias na abordagem da extração de características, as quais são usadas pelos algoritmos de clusterização. O módulo estendido encarregado da extração de características é chamado de BugAIDExtract+ +. Além disso, neste trabalho é realizada uma avaliação de vários algoritmos de clusterização na descoberta dos padrõs de defeitos em software JavaScript / Applications developed with JavaScript language are increasing every day, not only for client-side, but also for server-side and for mobile devices. In this context, the existence of tools to identify faults is fundamental in order to assist developers during the evolution of their applications. Most of these tools use a list of predened faults that are discovered from the observation of the programming best practices and developer intuition. To improve these tools, the automatic discovery of faults and code smells is important because it allows to identify which ones actually occur in practice and frequently. A tool that implements a semiautomatic strategy for discovering bug patterns by grouping the changes made during the project development is the BugAID. The objective of this work is to contribute to the BugAID tool, extending this tool with improvements in the extraction of characteristics to be used by the clustering algorithm. The extended module that extracts the characteristics is called BE+. Additionally, an evaluation of the clustering algorithms used for discovering fault patterns in JavaScript software is performed
|
150 |
Análise de grandezas cinemáticas e dinâmicas inerentes à hemiparesia através da descoberta de conhecimento em bases de dados / Analysis of kinematic and dynamic data inherent to hemiparesis through knowledge discovery in databasesMoretti, Caio Benatti 31 March 2016 (has links)
Em virtude de uma elevada expectativa de vida mundial, faz-se crescente a probabilidade de ocorrer acidentes naturais e traumas físicos no cotidiano, o que ocasiona um aumento na demanda por reabilitação. A terapia física, sob o paradigma da reabilitação robótica com serious games, oferece maior motivação e engajamento do paciente ao tratamento, cujo emprego foi recomendado pela American Heart Association (AHA), apontando a mais alta avaliação (Level A) para pacientes internados e ambulatoriais. No entanto, o potencial de análise dos dados coletados pelos dispositivos robóticos envolvidos é pouco explorado, deixando de extrair informações que podem ser de grande valia para os tratamentos. O foco deste trabalho consiste na aplicação de técnicas para descoberta de conhecimento, classificando o desempenho de pacientes diagnosticados com hemiparesia crônica. Os pacientes foram inseridos em um ambiente de reabilitação robótica, fazendo uso do InMotion ARM, um dispositivo robótico para reabilitação de membros superiores e coleta dos dados de desempenho. Foi aplicado sobre os dados um roteiro para descoberta de conhecimento em bases de dados, desempenhando pré-processamento, transformação (extração de características) e então a mineração de dados a partir de algoritmos de aprendizado de máquina. A estratégia do presente trabalho culminou em uma classificação de padrões com a capacidade de distinguir lados hemiparéticos sob uma precisão de 94%, havendo oito atributos alimentando a entrada do mecanismo obtido. Interpretando esta coleção de atributos, foi observado que dados de força são mais significativos, os quais abrangem metade da composição de uma amostra. / As a result of a higher life expectancy, the high probability of natural accidents and traumas occurences entails an increasing need for rehabilitation. Physical therapy, under the robotic rehabilitation paradigm with serious games, offers the patient better motivation and engagement to the treatment, being a method recommended by American Heart Association (AHA), pointing the highest assessment (Level A) for inpatients and outpatients. However, the rich potential of the data analysis provided by robotic devices is poorly exploited, discarding the opportunity to aggregate valuable information to treatments. The aim of this work consists of applying knowledge discovery techniques by classifying the performance of patients diagnosed with chronic hemiparesis. The patients, inserted into a robotic rehabilitation environment, exercised with the InMotion ARM, a robotic device for upper-limb rehabilitation which also does the collection of performance data. A Knowledge Discovery roadmap was applied over collected data in order to preprocess, transform and perform data mining through machine learning methods. The strategy of this work culminated in a pattern classification with the abilty to distinguish hemiparetic sides with an accuracy rate of 94%, having eight attributes feeding the input of the obtained mechanism. The interpretation of these attributes has shown that force-related data are more significant, comprising half of the composition of a sample.
|
Page generated in 0.0495 seconds