• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effects of Early Chemotherapeutic Treatment on Learning, Novelty, and Drug Reward in Adolescent Mice

Bisen-Hersh, Emily Beth January 2012 (has links)
Among children diagnosed with acute lymphoblastic leukemia (ALL) and given chemotherapy-only treatment, 40-70% of survivors experience neurocognitive impairment. Psychostimulants such as methylphenidate are becoming popular medications for treating these deficits in childhood cancer survivors. However, little is known about the outcome of prescribing stimulants to this population. In the research reported here, a novel preclinical mouse model of ALL treatment was developed and used to investigate the effects of early exposure to methotrexate (MTX) and cytarabine (Ara-C) on learning and memory, and the outcome of treating these deficits using a number of different stimulants. Mouse pups were treated on postnatal day (PND) 14, 15, and 16 with saline, MTX, Ara-C, or two combinations of MTX and Ara-C. At PND 35, significant impairments on learning and memory as measured by autoshaping and novel object recognition were found. Mild deficits were observed in a novel conditional discrimination task, which suggests that extensive training may ameliorate learning impairments. MTX and Ara-C treated mice also exhibited sensitivity to the rewarding and stimulatory properties of amphetamine and methylphenidate, suggesting that typical psychostimulants may become more potent following early chemotherapeutic treatment. In contrast, no increase in drug reward following early exposure to MTX and Ara-C was found for an alternative treatment with possible neuroprotective effects, atomoxetine. These findings were further supported by converging evidence that chemotherapy-treated mice displayed increased novelty-seeking. In addition, a greater percentage of MTX and Ara-C treated mice acquired cocaine self-administration, and maintained a higher number of infusions per session. Overall, these findings highlight the usefulness of preclinical models to examine the developmental effects of early exposure to chemotherapeutic agents on future learning, possible models of cognitive remediation, and the consequences of treating impairments using typical psychostimulant medications. / Psychology
2

Three-Dimensional Human Neural Stem Cell Culture for High-Throughput Assessment of Developmental Neurotoxicity

Joshi, Pranav 04 June 2019 (has links)
No description available.
3

Distribution and Long-term Effects of the Environmental Neurotoxin β-N-methylamino-L-alanine (BMAA) : Brain changes and behavioral impairments following developmental exposure

Karlsson, Oskar January 2010 (has links)
Many cyanobacteria are reported to produce the nonprotein amino acid β-N-methylamino-L-alanine (BMAA). Cyanobacteria are extensively distributed in terrestrial and aquatic environments and recently BMAA was detected in temperate aquatic ecosystems, e.g. the Baltic Sea. Little is known about developmental effects of the mixed glutamate receptor agonist BMAA. Brain development requires an optimal level of glutamate receptor activity as the glutamatergic system modulates many vital neurodevelopmental processes. The aim of this thesis was to investigate the developmental neurotoxicity of BMAA, and its interaction with the pigment melanin. Autoradiography was utilized to determine the tissue distribution of 3H-labelled BMAA in experimental animals. Behavioral studies and histological techniques were used to study short and long-term changes in the brain following neonatal exposure to BMAA. Long-term changes in protein expression in the brain was also investigated using matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS). A notable targeting of 3H-BMAA to discrete brain regions e.g. hippocampus and striatum in mouse fetuses and neonates was determined by autoradiography. BMAA treatment of neonatal rats on postnatal days 9–10 induced acute but transient ataxia and hyperactivity. Postnatal exposure to BMAA also gave rise to reduced spatial learning and memory abilities in adulthood. Neonatal rat pups treated with BMAA at 600 mg/kg showed early neuronal cell death in the hippocampus, retrosplenial and cingulate cortices. In adulthood the CA1 region of the hippocampus displayed neuronal loss and astrogliosis. Lower doses of BMAA (50 and 200 mg/kg) caused impairments in learning and memory function without any acute or long-term morphological changes in the brain. The MALDI IMS studies, however, revealed changes in protein expression in the hippocampus and striatum suggesting more subtle effects on neurodevelopmental processes. The studies also showed that BMAA was bound and incorporated in melanin and neuromelanin, suggesting that pigmented tissues such as in the substantia nigra and eye may be sequestering BMAA. In conclusion, the findings in this thesis show that BMAA is a developmental neurotoxin in rodents. The risks posed by BMAA as a potential human neurotoxin merits further consideration, particularly if the proposed biomagnifications in the food chain are confirmed.
4

An Investigation of The Link Between Endocrine Disruption and Developmental Neurotoxicity Induced by Environmental Pollutants : In Zebrafish Embryos

Revenikioti, Maria January 2023 (has links)
Endocrine-disrupting chemicals (EDCs) are known to cause endocrine disruption (ED), developmental neurotoxicity (DNT), infertility and impaired embryo development. EDCs do therefore impose a threat to humans, wildlife and the environment. The present study investigated the effects of the reference compounds dihydrotestosterone, estradiol, benzo(a)pyrene, rosiglitazone, as well as the EDCs bisphenol F and perfluorooctanesulfonic acid at various concentrations on zebrafish embryos. The scientific questions of the study were to investigate how these environmental pollutants impact the development of zebrafish, what their molecular mechanisms are and what the link between ED and DNT is. Zebrafish embryos were exposed for 5 days to the compounds and various parameters on development were collected at different time points. The expression of 41 genes (qPCR) related to ED and DNT, and the levels of 23 steroids (LC-MS/MS) were determined. Gene correlations were determined with Pearson’s correlation test and paired t-tests were used to determine significantly altered gene activities. The significant gene expression changes were further related to the pathways of steroids in order to connect how gene activity impacted steroid levels. Exposure to estradiol, dihydrotestosterone and bisphenol F induced cyp19a1b expression which can affect personality traits. Perfluorooctanesulfonic acid interferes with thyroid hormone transport by binding to TTR causing profound effects on neurodevelopmental processes and cognitive functions. The compounds influenced genes that can disrupt endocrine systems which can cause neurodevelopmental impairments.
5

Optimization of an In-Vitro System for Testing Developmental Neurotoxicity Induced by Oestrogen, Androgen and Thyroid Disruption

Awoga, Roseline Ayowumi January 2021 (has links)
In recent times, endocrine disrupting chemicals (EDCs) have been associated with the rise in neurodevelopmental disorders such as autism, attention deficit hyperactivity disorder (ADHD) and decreased intelligence quotient (IQ) in children. This effect is suspected to be induced at pre-/peri-natal development, via an alteration in hormonal signaling, thus interfering with neuronal differentiation, with subsequent effect on normal brain development and function in exposed children. This issue increases the need for chemical screening for potential developmental neurotoxicity (DNT) effect. The current available EDC induced DNT test guideline is based on in-vivo testing that requires animal use. Here, a multipotent neural progenitor cell line, the C17.2 cell-line, generated from neural stem cells of the external germinal layer of mouse cerebellum, with potential to differentiate to neurons or astrocytes, is introduced for in-vitro EDC induced DNT testing. This project focused on optimizing the C17.2 cell-line for the detection of EDC-induced DNT with emphasis on the disruption of the oestrogen, androgen, and thyroid hormone systems. It aimed at validating the involvement of oestrogen, androgen, and thyroid hormone on molecular and cellular endpoints relevant for the differentiation of the C17.2 cells.  Herein, the cells were exposed to the hormonal agonist and antagonist at a range of concentrations for a 10-day differentiation period. After exposure, LDH, viability assay and morphological changes (percentage of neurons in culture and neurite outgrowth) were evaluated. The results showed no morphological changes induced by androgen receptor (AR) agonist/antagonist at relevant physiological concentrations. The thyroid receptor (TR) agonist and antagonist on the other hand showed a response in the form of increased neurite outgrowth in relation to the negative control at a concentration range of 40-200 nM and 40 nM respectively. The oestrogen receptor (ER) antagonist at 100 nM also increased percentage neuron in culture. Additionally, in-silico analysis of microarray and RNA sequencing data were used to map out target genes regulated by ER, AR and TR and involved in neurodevelopment. With this approach, 29 marker genes were identified. Validation of the marker genes by means of gene expression (qPCR) was carried out, ER and TR agonist/antagonist were observed to modulate the expression of examined genes. In summary, the model could not be established for detecting EDC induced DNT via androgenic and oestrogenic pathway, while it is a promising model for identifying DNT induced by thyroid hormone signalling disruption.

Page generated in 0.0587 seconds