Spelling suggestions: "subject:"diabetes research"" "subject:"iabetes research""
31 |
Stress-inducible Mig6 promotes pancreatic beta cell destruction in the pathogenesis of diabetesChen, Yi-Chun 08 December 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Pancreatic insulin-secreting beta cell failure is central to the development of diabetes. Therapeutic applications targeted at understanding and manipulating beta cell destruction mechanisms should enhance the preservation of functional beta cell mass and prevent diabetes. To this end, we have demonstrated that diabetogenic assaults (e.g., endoplasmic reticulum stress, glucolipotoxicity, and pro-inflammatory cytokines) attenuate the activation of beta cell pro-survival signaling pathways via a stress-inducible molecule called Mitogen-inducible gene 6 (Mig6). We discovered that the overabundance of Mig6 exacerbates stress-induced beta cell apoptosis and inhibits insulin secretion. Conversely, the deficiency of Mig6 partially protected beta cells from DNA damage-induced cell death. Further, we established that Mig6 haploinsufficient mice retained islet integrity and function and exhibited greater beta cell mass recovery following treatment with multiple low doses of the beta cell toxin streptozotocin. These data suggest that Mig6 may be a therapeutic target for beta cell preservation in diabetes.
|
32 |
Mobile Technology to Improve Adherence in Patients with Diabetes: Systematic ReviewPortillo, Wilfredo 20 August 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / BACKGROUND: The pathophysiology of diabetes mellitus and the need for vigilant monitoring of serum glucose levels lends itself well to prompt medical intervention by healthcare providers that can significantly reduce morbidity and mortality and improve patient quality of life. The effect of intervention in diabetes can be assessed by following objective laboratory measurements such as hemoglobin A1C, which is abnormal with poorly controlled diabetes and returns to normal with proper management. There are mobile technologies now available that allow for self-monitoring and intervention in this patient population. Using a systematic approach this paper will assess the benefits of Short Message Services and mobile technology in managing patients with diabetes and improving adherence and other outcomes. OBJECTIVE: To assess the benefits and disadvantages the use of mobile technology could have in the management of diabetes. METHODOLOGY: A systematic review of articles on this topic was performed. A total of 759 articles were initially identified by searching various search engines, from which only 39 articles met all of the inclusion/exclusion criteria of this systematic review. FINDINGS: The initial review of literature indicated that the use of mobile technology in patients with diabetes resulted in improved disease outcomes as indicated by parameters such as a decrease in hemoglobin A1C, and an increase in sustainable blood glucose levels. CONCLUSION: Mobile technology is found to be a promising tool in the management of diabetes, but further research is needed because there is a lack of reliable studies, trials, and systematic reviews. Physicians and other healthcare professionals are rapidly adopting mobile technology for use in clinical practice because they understand the rising phenomenon of mobile technology.
|
33 |
Regulation of glucose homeostasis by Doc2b and Munc18 proteins.Ramalingam, Latha January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Glucose homeostasis is maintained through the coordinated actions of insulin secretion from pancreatic beta cells and insulin action in peripheral tissues. Dysfunction of insulin action yields insulin resistance, and when coupled with altered insulin secretion, results in type 2 diabetes (T2D). Exocytosis of intracellular vesicles, such as insulin granules and glucose transporter (GLUT4) vesicles is carried out by similar SNARE (soluble NSF attachment receptor) protein isoforms and Munc18 proteins. An additional regulatory protein, Doc2b, was implicated in the regulation of these particular exocytosis events in clonal cell lines, but relevance of Doc2b in the maintenance of whole body glucose homeostasis in vivo remained unknown. The objective of my doctoral work was to delineate the mechanisms underlying regulation of insulin secretion and glucose uptake by Doc2b in effort to identify new therapeutic targets within these processes for the prevention and/or treatment of T2D. Towards this, mice deficient in Doc2b (Doc2b-/- knockout mice) were assessed for in vivo alterations in glucose homeostasis. Doc2b knockout mice were highly susceptible to preclinical T2D, exhibiting significant whole-body glucose intolerance related to insulin secretion insufficiency as well as peripheral insulin resistance. These phenotypic defects were accounted for by defects in assembly of SNARE complexes. Having determined that Doc2b was required in the control over whole body glycemia in vivo, whether Doc2b is also limiting for these mechanisms in vivo was examined. To study this, novel Doc2b transgenic (Tg) mice were engineered to express ~3 fold more Doc2b exclusively in pancreas, skeletal muscle and fat tissues. Compared to normal littermate mice, Doc2b Tg mice had improved glucose tolerance, related to concurrent enhancements in insulin mumsecretion from beta cells and insulin-stimulated glucose uptake in the skeletal muscle. At the molecular level, Doc2b overexpression promoted SNARE complex assembly, increasing exocytotic capacities in both cellular processes. These results unveiled the concept that intentional elevation of Doc2b could provide a means of mitigating two primary aberrations underlying T2D development.
|
34 |
The roles of pancreatic hormones in regulating pancreas development and beta cell regenerationYe, Lihua 16 June 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Diabetes mellitus is a group of related metabolic diseases that share a common pathological mechanism: insufficient insulin signaling. Insulin is a hormone secreted from pancreatic β cells that promotes energy storage and consequently lowers blood glucose. In contrast, the hormone glucagon, released by pancreatic α cells, plays a critical complementary role in metabolic homeostasis by releasing energy stores and increasing blood glucose. Restoration of β cell mass in diabetic patients via β cell regeneration is a conceptually proven approach to finally curing diabetes. Moreover, in situ regeneration of β cells from endogenous sources would circumvent many of the obstacles encountered by surgical restoration of β cell mass via islet transplantation. Regeneration may occur both by β cell self-duplication and by neogenesis from non-β cell sources. Although the mechanisms regulating the β cell replication pathway have been highly investigated, the signals that regulate β cell neogenesis are relatively unknown. In this dissertation, I have used zebrafish as a genetic model system to investigate the process of β cell neogenesis following insulin signaling depletion by various modes. Specifically, I have found that after their ablation, β cells primarily regenerate from two discrete cellular sources: differentiation from uncommitted pancreatic progenitors and transdifferentiation from α cells. Importantly, I have found that insulin and glucagon play crucial roles in controlling β cell regeneration from both sources. As with metabolic regulation, insulin and glucagon play counter-balancing roles in directing endocrine cell fate specification. These studies have revealed that glucagon signaling promotes β cell formation by increasing differentiation of pancreas progenitors and by destabilizing α cell identity to promote α to β cell transdifferentiation. In contrast, insulin signaling maintains pancreatic progenitors in an undifferentiated state and stabilizes α cell identity. Finally, I have shown that insulin also regulates pancreatic exocrine cell development. Insufficient insulin signaling destabilized acinar cell fate and impairs exocrine pancreas development. By understanding the roles of pancreatic hormones during pancreas development and regeneration can provide new therapeutic targets for in vivo β cell regeneration to remediate the devastating consequences of diabetes.
|
35 |
Surviving the Perfect Storm of Diabetes in the World of the Schitsu'umshTiedt, Jane A. 21 October 2010 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Diabetes is a significant health problem in the United States which disproportionately affects Native Americans. Despite many new prevention and intervention programs, there has been a prolific increase in the incidence of diabetes among Native Americans. The purpose of this qualitative study was to explore the experience of Coeur d’Alene tribal members living with type 2 diabetes using a Heideggerian hermeneutic framework.
Participants were recruited through the local diabetes educator at the tribal clinic using purposive and snowball sampling. Individual interviews were conducted with ten Coeur d’Alene tribal members whom had type 2 diabetes and were willing to share their stories of about living with diabetes. Participants ranged in age from 26-86. Interviews lasted from 25-90 minutes and focused on gathering stories about their daily life with their diabetes, and barriers and supports to their diabetes self-management. These became the data for hermeneutic interpretations. Individual transcripts were read and reread for initial themes. Next, comparisons between and across transcripts were done through interpretive emersion into the texts. Emerging themes and patterns were brought before a group of qualitative nurse researchers and doctoral students as a means of cross-checking and validating interpretations.
Perseverance was the overarching pattern in the stories of living with diabetes in the world of Schitsu’umsh. The four themes that emerged under the umbrella of perseverance were valuing tribal traditions, being inattentively caring, struggling with disease burdens, and experiencing tensions in patient-provider relations. Living with diabetes in the world of the Schitsu’umsh was always a tenuous balancing act. There was an ever present dialectic tension between strengths and barriers underlying their daily struggles for balance.
By increasing our understanding of Native American experiences of living with diabetes, collaborative partnerships can be developed with the tribes to address these barriers to diabetes self-management and to develop culturally relevant diabetes education programs. There is also a need to address cultural competence by the health care community and to work at eliminating biases and prejudice in our healthcare system. This work brings new cultural understandings of what it means to live with diabetes in one Native American group.
|
36 |
Differentiation and contractility of colon smooth muscle under normal and diabetic conditionsTouw, Ketrija 07 October 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Intestinal smooth muscle development involves complex transcriptional regulation leading to cell differentiation of the circular, longitudinal and muscularis mucosae layers. Differentiated intestinal smooth muscle cells express high levels of smooth muscle-specific contractile and regulatory proteins, including telokin. Telokin is regulatory protein that is highly expressed in visceral smooth muscle. Analysis of cis-elements required for transcriptional regulation of the telokin promoter by using hypoxanthine-guanine phosphoribosyltransferase (Hprt)-targeted reporter transgenes revealed that a 10 base pair large CC(AT)₆GG ciselement, called CArG box is required for promoter activity in all tissues. We also determined that an additional 100 base pair region is necessary for transgene activity in intestinal smooth muscle cells. To examine how transcriptional regulation of intestinal smooth muscle may be altered under pathological conditions we examined the effects of diabetes on colonic smooth muscle. Approximately 76% of diabetic patients develop gastrointestinal (GI) symptoms such as constipation due to intestinal dysmotility. Mice were treated with low-dose streptozotocin to induce a type 1 diabetes-like hyperglycemia. CT scans revealed decreased overall GI tract motility after 7 weeks of hyperglycemia. Acute (1 week) and chronic (7 weeks) diabetic mice also had decreased potassium chloride (KCl)-induced colon smooth muscle contractility. We hypothesized that decreased smooth muscle contractility at least in part, was due to alteration of contractile protein gene expression. However, diabetic mice showed no changes in mRNA or protein levels of smooth muscle contractile proteins. We determined that the decreased colonic contractility was associated with an attenuated intracellular calcium increase, as measured by ratio-metric imaging of Fura-2 fluorescence in isolated colonic smooth muscle strips. This attenuated calcium increase resulted in decreased myosin light chain phosphorylation, thus explaining the decreased contractility of the colon. Chronic diabetes was also associated with increased basal calcium levels. Western blotting and quantitative real time polymerase chain reaction (qRT-PCR) analysis revealed significant changes in calcium handling proteins in chronic diabetes that were not seen in the acute state.These changes most likely reflect compensatory mechanisms activated by the initial impaired calcium response. Overall my results suggest that type 1 diabetes in mice leads to decreased colon motility in part due to altered calcium handling without altering contractile protein expression.
|
37 |
F-Actin regulation of SNARE-mediated insulin secretionKalwat, Michael Andrew 07 October 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In response to glucose, pancreatic islet beta cells secrete insulin in a biphasic manner, and both phases are diminished in type 2 diabetes. In beta cells, cortical F-actin beneath the plasma membrane (PM) prevents insulin granule access to the PM and glucose stimulates remodeling of this cortical F-actin to allow trafficking of insulin granules to the PM. Glucose stimulation activates the small GTPase Cdc42, which then activates p21-activated kinase 1 (PAK1); both Cdc42 and PAK1 are required for insulin secretion. In conjunction with Cdc42-PAK1 signaling, the SNARE protein Syntaxin 4 dissociates from F-actin to allow SNARE complex formation and insulin exocytosis. My central hypothesis is that, in the pancreatic beta cell, glucose signals through a Cdc42-PAK1-mediated pathway to remodel the F-actin cytoskeleton to mobilize insulin granules to SNARE docking sites at the PM to evoke glucose stimulated second phase insulin secretion. To investigate this, PAK1 was inhibited in MIN6 beta cells with IPA3 followed by live-cell imaging of F-actin remodeling using the F-actin probe, Lifeact-GFP. PAK1 inhibition prevented normal glucose-induced F-actin remodeling. PAK1 inhibition also prevented insulin granule accumulation at the PM in response to glucose. The ERK pathway was implicated, as glucose-stimulated ERK activation was decreased under PAK1-depleted conditions. Further study showed that inhibition of ERK impaired insulin secretion and cortical F-actin remodeling. One of the final steps of insulin secretion is the fusion of insulin granules with the PM which is facilitated by the SNARE proteins Syntaxin 4 on the PM and VAMP2 on the insulin granule. PAK1 activation was also found to be critical for Syntaxin 4-F-actin complex dynamics in beta cells, linking the Cdc42-PAK1 signaling pathway to SNARE-mediated exocytosis. Syntaxin 4 interacts with the F-actin severing protein Gelsolin, and in response to glucose Gelsolin dissociates from Syntaxin 4 in a calcium-dependent manner to allow Syntaxin 4 activation. Disrupting the interaction between Syntaxin 4 and Gelsolin aberrantly activates endogenous Syntaxin 4, elevating basal insulin secretion. Taken together, these results illustrate that signaling to F-actin remodeling is important for insulin secretion and that F-actin and its binding proteins can impact the final steps of insulin secretion.
|
38 |
Mechanisms of translational regulation in the pancreatic β cell stress responseTemplin, Andrew Thomas January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The islet beta cell is unique in its ability to synthesize and secrete insulin for use in the body. A number of factors including proinflammatory cytokines, free fatty acids, and islet amyloid are known to cause beta cell stress. These factors lead to lipotoxic, inflammatory, and ER stress in the beta cell, contributing to beta cell dysfunction and death, and diabetes. While transcriptional responses to beta cell stress are well appreciated, relatively little is known regarding translational responses in the stressed beta cell. To study translation, I established conditions in vitro with MIN6 cells and mouse islets that mimicked UPR conditions seen in diabetes. Cell extracts were then subjected to polyribosome profiling to monitor changes to mRNA occupancy by ribosomes. Chronic exposure of beta cells to proinflammatory cytokines (IL-1 beta, TNF-alpha, IFN-gamma), or to the saturated free fatty acid palmitate, led to changes in global beta cell translation consistent with attenuation of translation initiation, which is a hallmark of ER stress. In addition to changes in global translation, I observed transcript specific regulation of ribosomal occupancy in beta cells. Similar to other privileged mRNAs (Atf4, Chop), Pdx1 mRNA remained partitioned in actively translating polyribosomes during the UPR, whereas the mRNA encoding a proinsulin processing enzyme (Cpe) partitioned into inactively translating monoribosomes. Bicistronic luciferase reporter analyses revealed that the distal portion of the 5’ untranslated region of mouse Pdx1 (between bp –105 to –280) contained elements that promoted translation under both normal and UPR conditions. In contrast to regulation of translation initiation, deoxyhypusine synthase (DHS) and eukaryotic translation initiation factor 5A (eIF5A) are required for efficient translation elongation of specific stress relevant messages in the beta cell including Nos2. Further, p38 signaling appears to promote translational elongation via DHS in the islet beta cell. Together, these data represent new insights into stress induced translational regulation in the beta cell. Mechanisms of differential mRNA translation in response to beta cell stress may play a key role in maintenance of islet beta cell function in the setting of diabetes.
|
39 |
Novel Roles of p21 in Apoptosis During Beta-Cell Stress in DiabetesHernández-Carretero, Angelina M. January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Type 2 diabetes manifests from peripheral insulin resistance and a loss of functional beta cell mass due to decreased beta cell function, survival, and/or proliferation. Beta cell stressors impair each of these factors by activating stress response mechanisms, including endoplasmic reticulum (ER) stress. The glucolipotoxic environment of the diabetic milieu also activates a stress response in beta cells, resulting in death and decreased survival. Whereas the cell cycle machinery (comprised of cyclins, kinases, and inhibitors) regulates proliferation, its involvement during beta cell stress in the development of diabetes is not well understood. Interestingly, in a screen of multiple cell cycle inhibitors, p21 was dramatically upregulated in INS-1-derived 832/13 cells and rodent islets by two independent pharmacologic inducers of beta cell stress - dexamethasone and thapsigargin. In addition, glucolipotoxic stress mimicking the diabetic milieu also induced p21. To further investigate p21’s role in the beta cell, p21 was adenovirally overexpressed in 832/13 cells and rat islets. As expected given p21’s role as a cell cycle inhibitor, p21 overexpression decreased [3H]-thymidine incorporation and blocked the G1/S and G2/M transitions as quantified by flow cytometry. Interestingly, p21 overexpression activated apoptosis, demonstrated by increased annexin- and propidium iodide-double-positive cells and cleaved caspase-3 protein. p21-mediated caspase-3 cleavage was inhibited by either overexpression of the anti-apoptotic mitochondrial protein Bcl-2 or siRNA-mediated suppression of the pro-apoptotic proteins Bax and Bak. Therefore, the intrinsic apoptotic pathway is central for p21-mediated cell death. Like glucolipotoxicity, p21 overexpression inhibited the insulin cell survival signaling pathway while also impairing glucose-stimulated insulin secretion, an index of beta cell function. Under both conditions, phosphorylation of insulin receptor substrate-1, Akt, and Forkhead box protein-O1 was reduced. p21 overexpression increased Bim and c-Jun N-terminal Kinase, however, siRNA-mediated reduction or inhibition of either protein, respectively, did not alter p21-mediated cell death. Importantly, islets of p21-knockout mice treated with the ER stress inducer thapsigargin displayed a blunted apoptotic response. In summary, our findings indicate that p21 decreases proliferation, activates apoptosis, and impairs beta cell function, thus being a potential target to inhibit for the protection of functional beta cell mass.
|
40 |
Pdx-1 modulates endoplasmic reticulum calcium homeostasis in the islet β cell via transcriptional enhancement of SERCA2bJohnson, Justin Sean January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Diabetes mellitus affects an estimated 285 million people worldwide, and a central component of diabetes pathophysiology is diminished pancreatic islet beta cell function resulting in the inability to manage blood glucose effectively. The beta cell is a highly specialized metabolic factory that possesses a number of specialized characteristics, chief among these a highly developed endoplasmic reticulum (ER). The sarco endoplasmic reticulum Ca2+ ATPase 2b (SERCA2b) pump maintains a steep Ca2+ gradient between the cytosol and ER lumen, and while the Pancreatic and duodenal homeobox 1 (Pdx-1) transcription factor is known to play an indispensable role in beta cell development and function, recent data also implicate Pdx-1 in the maintenance of ER health. Our data demonstrates that a decrease of beta cell Pdx-1 occurs in parallel with decreased SERCA2b expression in models of diabetes, while in silico analysis of the SERCA2b promoter reveals multiple putative Pdx-1 binding sites. We hypothesized that Pdx-1 loss under inflammatory and diabetic conditions leads to decreased SERCA2b with concomitant alterations in ER health.
To test this, siRNA-mediated knockdown of Pdx-1 was performed in INS-1 cells. Results revealed reduced SERCA2b expression and decreased ER Ca2+, which was measured using an ER-targeted D4ER adenovirus and fluorescence lifetime imaging microscopy. Co-transfection of human Pdx-1 with a reporter fused to the human SERCA2 promoter increased luciferase activity three-fold relative to the empty vector control, and direct binding of Pdx-1 to the proximal SERCA2 promoter was confirmed by chromatin immunoprecipitation. To determine whether restoration of SERCA2b could rescue ER stress induced by Pdx-1 loss, Pdx1+/- mice were fed high fat diet for 8 weeks. Isolated islets from these mice demonstrated increased expression of spliced Xbp1, signifying ER stress, while subsequent SERCA2b overexpression in isolated islets reduced spliced Xbp1 levels to that of wild-type controls. These results identify SERCA2b as a direct transcriptional target of Pdx-1 and define a novel role for altered ER Ca2+ regulation in Pdx-1 deficient states.
|
Page generated in 0.0475 seconds