• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • Tagged with
  • 11
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ab-initio Raman spectra of anharmonic and disordered systems

Putrino, Anna. January 2000 (has links)
Stuttgart, Univ., Diss., 2000.
2

Implementation, Development and Assessment of Local Hybrid Density Functionals / Implementierung, Entwicklung und Validierung lokaler Hybriddichtefunktionale

Bahmann, Hilke January 2010 (has links) (PDF)
In order to describe complex molecular systems theoretically, an efficient and reliable solution to the underlying quantum mechanical equations of motion is required. Density functional theory (DFT) represents in most cases the best compromise between accuracy and efficiency for the treatment of electronic interactions. In Kohn-Sham DFT, the non-classical contribution to electron-electron interactions is gathered in the exchange-correlation functional, which has to be approximated in practice. While a large number of exchange-correlation functionals are of semi-empirical nature, some have been derived from physical considerations exclusively. In so-called global hybrid functionals a constant amount of the integrated DFT exchange-energy density is replaced by the exact-exchange energy from Hartree-Fock theory. The most popular functional, B3LYP, contains 20 % exact exchange and several empirical parameters. It has been discovered that the optimal amount of exact exchange depends to a large extent on the molecular property to be computed. A possible solution to this problem is to use local hybrid functionals. Therein, the admixture of exact exchange is controlled by a position-dependent local mixing function (LMF), leading to molecule-specific amounts of exact exchange. In this work a semi-empirical approach is pursued for the development of new local hybrid functionals. Parameterized LMFs are introduced in the exchange-energy density integrals, for which the DFT contributions are taken from established approximations to the exchange-correlation functional. The LMFs developed here contain at least one empirical parameter and a variable that depends on the ratio of the von-Weizsäcker single-particle kinetic energy density to the correlated kinetic-energy density (the so-called t-LMFs), or on the reduced density gradient (referred to as s-LMF). Additional LMFs are obtained by inclusion of the spin polarization. All parameters are fitted to atomization energies and reaction barriers of well-established test sets. Visualization of the LMFs provides an additional tool for analyzing their physical and chemical behavior, potentially leading to further developments. As a general trend, an increasing exact-exchange admixture is observed upon bond stretching for all LMFs, with a more pronounced effect for t-LMFs. This observation correlates with a better performance for reaction barriers of t -LMF-based local hybrid functionals. Most of the local hybrid functionals discussed in this work are based on the exchange and correlation functional from the local spin density approximation (LSDA) and contain therefore no gradient correction such as in the generalized gradient approximation (GGA). The new functionals were initially implemented non-self-consistently into a development version of the quantum chemical Turbomole program package. That is, only the total energy is calculated for a given set of molecular orbitals or electron density, respectively. This is a reliable approximation that allows for significant time savings especially during parameter optimizations. In order to calculate orbital-dependent molecular properties, the local hybrid potential corresponding to the local hybrid energy is required as well. It is obtained as a functional derivative of the exchange-correlation energy with respect to the orbitals. Some of the resulting integrals contain the LMF-weighted non-local exact-exchange potential. These terms as well as the exact-exchange energy density itself cannot be calculated analytically. Following a well-established approach, they have been approximated using a basis set expansion of the exact-exchange potential. For simplicity, the underlying atomic basis set is employed in this resolution of the identity (RI) approximation. For comparison and in view of the optimization of auxiliary basis sets, the optional calculation of the potential by numerical integration has also been implemented in this work. The computational cost of local hybrid calculations for a given basis set, using the RI approximation is comparable to the one of gobal hybrid functionals: a slightly larger prefactor applies to a calculation with a local hybrid functional as compared to a meta-GGA global hybrid, while the scaling of computational effort as a function of system size is the same. Several molecular test sets including atomization energies, barrier heights, dissociation energies and equilibrium distances have been considered for the assessment. Some of them represent particular challenges for current density functional approximations. All of the discussed local hybrid functionals yield significantly better results for the 223 atomization energies of the G3 test set than the B3LYP functional. Especially local hybrid functionals with spin-polarized t -LMFs gives impressively small mean absolute errors for the G3 set. Most of our functionals are in addition significantly superior to B3LYP for the calculation of barrier heights. Some other global hybrid functionals perform even better than our functionals for barriers, but their intrinsic amount of exact exchange is inappropriately high for thermochemical property calculations. For the first time, LSDA-based local hybrid functional have thus been presented that gives accurate results for thermochemistry and reaction barriers simultaneously. The dissociation behavior of symmetric radical cations remains a challenge for the local hybrid functionals presented here. Dissociation energies are significantly overestimated, and the equilibrium distances are too short. The results are overall only slightly better than those obtained using the B3LYP functional. A larger amount of exact exchange is most likely needed for these systems to reduce self-interaction errors. Additionally, the performance of local hybrid functionals for 3d transition metal dimers and monohydrides has been studied. An accurate description of dynamical and nondynamical correlation is essential for the former. The poor performance of most exchange-correlation functionals for transition metal monohydrides can be attributed to self-interaction errors. Our local hybrid functionals perform similarly to B3LYP for the dimers and marginally better for the monohydrides. They do not provide any improvement for the atomic s-d transfer energies of 3d metals. The most suitable local hybrid functional for this particular property uses a s-LMF in the exchange functional and the LYP correlation functional. It yields, however, only average-quality results for thermochemistry and kinetics. Satisfactory results similar to B3LYP are obtained for the isotropic hyperfine coupling constants (HFCCs) of small main group compounds with a t-LMF-based local hybrid functional. The RI approximation to the local hybrid potential has been validated by comparing it to the numerically exact potential for the calculation of total energies, isotropic HFCCs and orbital energies. The error in total energies due to the RI approximation is comparatively small considering the rather large deviations from experimental values. Comparison of mean absolute errors from experimental values of the 26 isotropic HFCCs reveals only small differences between the RI and the numerically exact local hybrid potential. Further analysis shows that inaccuracies in the RI potential may have a larger impact on the isotropic HFCCs or the orbital energies of a particular molecule, especially if only small or medium-sized basis sets are employed. Several of the local hybrid functionals are suitable for the calculation of thermochemical and kinetic properties. Different functionals yield also results similar to other commonly used functionals for isotropic HFCCs of small main group compounds, as well as for the dissociation energies and equilibrium distances of 3d transition metal dimers and monohydrides. The local hybrid functionals studied in this work represent therefore an important step towards the development of universal approximations to the exchange-correlation functional. For a more accurate description of certain transition metal properties and the dissociation behavior of symmetric radical cations while maintaining a good performance for thermochemistry and kinetics, more complex LMFs will have to be considered. Ultimately a local hybrid functional with meta-GGA exchange and correlation energy densities that fulfills more exact constraints is desirable. Therefore further studies on the different gauges of the exchange energy densities are necessary. Another possibility would be the development of a specifically designed correlation functional to be combined with a local hybrid exchange functional based on the LSDA. More detailed studies on the quality of the RI approximation are recommended. Possible properties for this purpose include, e.g., ionization energies and electron affinities. Auxiliary basis sets should be implemented and optimized for the expansion of the exact-exchange potential in order to avoid additional deviations due to the RI-approximation or even fortuitously good results in the assessment of local hybrid functionals with normally contracted basis sets. Since density functional methods are applied extensively for structure optimizations, the gradient of the local hybrid energy with respect to the nuclear coordinates should be implemented to enable this feature in future versions of the code. / Für die Lösung der quantenmechanischen Bewegungsgleichungen, die komplexe, molekulare Systeme beschreiben, sind effiziente und verlässliche Näherungsverfahren erforderlich. Die Dichtefunktionaltheorie (DFT) stellt für die Behandlung der Elektronenwechselwirkung in vielen Fällen den besten Kompromiss zwischen Effizienz und Genauigkeit dar. Im Rahmen der DFT wird die gesamte nicht-klassische Elektron-Elektron-Wechselwirkung im so genannten Austausch-Korrelationsfunktional angenähert. Viele solcher Näherungen sind semi-empirischer Natur, andere wurden ausschließlich von physikalischen Überlegungen abgeleitet. In globalen Hybridfunktionale wird ein konstanter Anteil der integrierten DFT-Austauschenergiedichte durch exakten Austausch aus der Hartree-Fock Näherung ersetzt. Das populärste Funktional B3LYP enthält 20 % exakten Austausch und mehrere empirische Parameter. Der optimale Prozentsatz hängt allerdings sehr stark von den zu berechnenden Systemen und molekularen Eigenschaften ab. Eine Lösung dieses Problems sollten lokale Hybridfunktionale liefern, in denen die Beimischung der exakten Austauschenergiedichte über eine lokale Mischfunktion (LMF) gesteuert wird und daher positions- und molekülabhängig ist. In dieser Arbeit wird ein semi-empirischer Ansatz für die Entwicklung neuer lokaler Hybridfunktionale verfolgt: während die Energiedichten unverändert aus etablierten Näherungen zum Austauschkorrelationsfunktional übernommen werden, stehen parametrisierte LMFs im Zentrum der Untersuchungen. Die verschiedenen LMFs beinhalten neben mindestens einem empirischen Parameter eine Variable die vom Quotienten der von-Weizsäcker kinetischen Energiedichte und der korrelierten kinetischen Energiedichte (sogenannte t-LMFs) bzw. dem reduzierten Dichtegradienten (bezeichnet als t-LMFs) abhängt. Weitere LMFs werden durch zusätzliche Berücksichtigung der Spinpolarisation erhalten. Alle Parameter werden an Atomisierungsenergien bzw. Reaktionsbarrieren bekannter molekularer Testsätze gefittet. Durch Visualisierung der LMFs können zusätzlich Einblicke in den physikalischen Hintergrund und in Möglichkeiten der Weiterentwicklung gewonnen werden. Es wurde beispielsweise beobachtet, dass entlang einer gedehnten Bindung höhere Werte der LMF und damit größere Beimischungen exakter Austauschenergie in Übergangszuständen einhergehen. Dieser Effekt ist für t-LMFs am ausgeprägtesten und korreliert mit besseren Ergebnissen für Reaktionsbarrieren mit lokalen Hybridfunktionalen, die auf einer t-LMF basieren. Bis auf wenige Ausnahmen leiten sich die lokalen Hybridfunktionale in dieser Arbeit aus dem Austausch- und Korrelationsfunktional der lokalen Dichtenäherung (LSDA) ab und enthalten keine Gradientenkorrektur im Sinne der GGA (generalized gradient approximation). Die neuen Funktionale wurden zunächst nicht-selbstkonsistent in eine Entwicklerversion des quantenchemischen Programmpaketes Turbomole implementiert. Das bedeutet, für gegebene Molekülorbitale bzw. eine gegeben Elektronendichte kann lediglich die Gesamtenergie berechnet werden. Dies ist eine anerkannte Näherung, die vor allem für die Optimierung der Parameter eine große Zeitersparnis darstellt. Um letztlich orbitalabhängige, molekulare Eigenschaften berechnen zu können wird neben der Gesamtenergie auch noch das zugehörige lokale Hybridpotential benötigt. Für die selbstkonsistente Implementierung wird die funktionale Ableitung der Austauschkorrelationsenergie nach den Orbitalen bestimmt. Daraus resultierend müssen neben den üblichen lokalen Austauschkorrelationspotentialtermen auch Integrale berechnet werden, die das mit der LMF gewichtete nicht-lokale exakte Austauschpotential enthalten. Die entsprechenden Terme kann man, genauso wie die exakte Austauschenergiedichte an sich, nicht analytisch berechnen. Früheren Ansätzen folgend wurden sie in der vorliegenden Arbeit in einer Basissatzentwicklung angenähert, wobei der Einfachheit halber die atomaren Basisfunktionen verwendet wurden. Um die Genauigkeit dieser sogenannten RI (resolution of the identity)-Näherung validieren zu können und auch schon im Hinblick auf die Anpassung einer Hilfsbasis, wurde darüber hinaus die numerische Berechnung aller Integrale, die das exakte Austauschpotential und die entsprechende Energiedichte enthalten, implementiert. Unter Verwendung der RI-Näherung ist der Rechenaufwand lokaler Hybride vergleichbar mit dem globaler Hybridfunktionale: Während die formale Skalierung in Abhängigkeit der Systemgröße gleich ist, ergab sich ein etwas höherer Vorfaktor für die lokalen Hybride. Verschiedene Literaturbekannte Testsätze mit Atomisierungsenergien, Reaktionsbarrieren, Dissoziationsenergien oder Gleichgewichtsabständen, die teilweise einige Schwächen bisheriger Dichtefunktionalnäherungen aufdecken, wurden berücksichtigt. Für die 223 Atomisierungsenergien des G3 Testsatzes stellen alle unsere Funktionale eine signifikante Verbesserung gegenüber B3LYP dar. Atomisierungsenergien sind insofern ein sensibler Test, da alle Bindungen gebrochen werden und Fehlerkompensation eine untergeordnete Rolle spielt. Vor allem lokale Hybridfunktionale, deren LMFs neben der kinetischen Energiedichte explizit von der Spinpolarisation abhängen, lieferten hervorragende Resultate. Obwohl im Vergleich zu Atomisierungsenergien für die korrekte Berechnung von Reaktionsbarrieren im Allgemeinen mehr exakter Austausch benötigt wird, sind unsere Funktionale auch für zwei Testsätze mit jeweils 38 Reaktionsbarrieren besser als B3LYP. Zwar kann mit einem globalen Hybrid mit 50 % exaktem Austausch eine geringere Abweichung von den Richtwerten erzielt werden, aber ein solches Funktional ist für thermochemische Daten unzureichend. Hier wurde erstmals gezeigt, dass lokale Hybridfunktionale ohne Gradientenkorrektur sowohl für Thermochemie als auch für Kinetik zufrieden stellende Ergebnisse liefern können. Das Dissoziationsverhalten symmetrischer Radikalkationen stellt für die hier diskutierten Dichtefunktionale nach wie vor eine Herausforderung dar: Die Dissoziationsenergien von sieben Modellsystemen werden mit unseren Funktionalen stark überschätzt und Gleichgewichtsabstände unterschätzt. Insgesamt sind die Werte nur marginal besser als mit B3LYP. Neben Eigenschaften von Hauptgruppenverbindungen wurden zudem Übergangsmetalldimere und -monohydride untersucht. Für erstere ist eine gute Beschreibung dynamischer sowie statischer Elektronenkorrelation ausschlaggebend. In den Hydriden andererseits dominiert mit gängigen Dichtefunktionalen die unphysikalische Selbstwechselwirkung eines Elektrons mit sich selbst. Für die 3d-Übergangsmetalldimere sind die getesteten Funktionale genauso gut wie B3LYP und für die Hydride etwas besser. Atomare s-d Transferenergien von 3d Übergangsmetallen verbleiben auch für unsere lokalen Hybridfunktionale, die insgesamt schlechtere Ergebnisse erzielen als B3LYP, noch problematisch. Das hierfür geeignetste lokale Hybridfunktional basiert auf einer s-LMF und beinhaltet LYP Korrelation. Für die isotropen Hyperfeinkopplungskonstanten (HFCCs) kleiner Hauptgruppenverbindungen wurden zufriedenstellende Ergebnisse (ähnlich wie B3LYP) mit einem t-LMF basierten lokalen Hybrid erzielt. Die RI Näherung zum lokalen Hybridpotential wurde dem numerisch exakten Potential für die Berechnung von Gesamtenergien, isotrope HFCCs und Orbitalenergien für verschiedene Basissätze gegenübergestellt. Wie erwartet ist der Fehler für Gesamtenergien mit der RI-Näherungen vergleichsweise gering, vor allem relativ zu den verbleibenden Abweichungen von experimentellen Energien. Der Vergleich der mittleren absoluten Abweichung von experimentellen Werten für 26 isotrope HFCCs zeigt sogar für mittelgroße und kontrahierte IGLO Basissätze nur geringe Unterschiede zwischen dem RI-Potential und dem numerisch exakten lokalen Hybridpotential. Die Analyse der HFCCs einzelner Moleküle und der Orbitalenergien des CN Moleküls offenbart allerdings, dass Ungenauigkeiten aufgrund der RI-Näherung hier eine größere Rolle spielen, vor allem wenn zu kleine atomare Basissätze verwendet werden. Von den untersuchten lokalen Hybriden stellen sich einige als hervorragende Kandidaten für die Berechnung thermochemischer und kinetischer Eigenschaften heraus. Jeweils unterschiedliche Funktionale erzielen darüber hinaus mit den besten bekannten Funktionalen vergleichbare Ergebnisse für isotrope Hyperfeinkopplungskonstanten und ausgewählte Eigenschaften kleiner Übergangsmetallverbindungen. Die in dieser Arbeit präsentierten lokalen Hybridfunktionale stellen daher einen wichtigen Schritt in der Entwicklung universeller Näherungen zum Austauschkorrelationsfunktional dar. Zur akkuraten Beschreibung molekularer Eigenschaften von Übergangsmetallkomplexen und dem Dissoziationsverhalten von Radikal-Kation-Dimeren neben Thermochemie und Kinetik, werden in Zukunft wohl komplexere LMFs benötigt. Um konkurrenzfähige lokale Hybride mit gradientenkorrigierter Austausch- und Korrelationsenergiedichte zu entwickeln, müssen darüber hinaus weitere Studien zum Einfluss des abweichenden Eichursprungs der miteinander kombinierten Austauschenergiedichten durchgeführt werden. Eine andere Möglichkeit ist die Entwicklung speziell abgestimmter Korrelationsfunktionale für lokale Hybride. Außerdem sollte die Qualität der RI-Näherung zum lokalen Hybridpotential detaillierter untersucht werden. Hierfür könnten zum Beispiel Ionisierungsenergien und Elektronenaffinitäten herangezogen werden. Um zusätzliche Abweichungen oder sogar fälschlicherweise "zu gute" Ergebnisse bei Validierungsrechnungen zu vermeiden, sollten Hilfsbasen für die Entwicklung des nicht-lokalen exakten Austauschpotentials implementiert und optimiert werden. Einer der nächsten Implementierungsschritte sollte auch Gradienten bezüglich der Kernkoordinaten beinhalten, um die Validierung der neuen lokalen Hybridfunktionale auf Strukturoptimierungen auszuweiten.
3

Zum Einfluß des Leerstellenmechanismus auf die Kinetik binärer Gittergase

Kessler, Michael. January 2002 (has links)
Konstanz, Univ., Diss., 2002.
4

Thermochemistry and kinetics for the oxidative degradation of dibenzofuran and precursors

Sebbar, Nadia. January 1900 (has links)
University, Diss., 2006--Karlsruhe.
5

Korrelationen und Ordnungskinetik an planaren Oberflächen von Legierungsmodellen

Reinhard, Johannes. Unknown Date (has links)
Universiẗat, Diss., 2000--Konstanz.
6

DFT-Rechnungen zur homogenen Katalyse mit Übergangsmetallen Olefinpolymerisation und asymmetrische Hydrierung

Graf, Martin January 2007 (has links)
Zugl.: Düsseldorf, Univ., Diss., 2007 u.d.T.: Graf, Martin: Dichtefunktionalrechnungen zur homogenen Katalyse mit Übergangsmetallen / Hergestellt on demand
7

Ab initio study of the chemical reactivity of metal clusters and metal oxide clusters

Bienati, Massimiliano 02 March 2001 (has links)
Mit der vorliegenden Arbeit wurden neue Erkenntnisse bei der Aufklärung der Mechanismen, die für die Reaktivität von Übergangsmetall- und Metalloxid-Clustern verantwortlich sind, gewonnen. Dies ist aus zwei Gründen gelungen: Zum einen erlaubt die gradienten-korrigierte Dichtefunktional-Methode eine zuverlässige Beschreibung von strukturellen und energetischen Eigenschaften dieser Cluster, insbesondere durch die Entwicklung einer neuen Generation von Hybrid-Austausch- und Korrelations-Funktionalen im Rahmen der verallgemeinerten Gradienten-Näherung. Diese wurden erstmalig in entsprechenden quantenchemischen Programmen implementiert und getestet. Zum zweiten stellte die fruchtbare Zusammenarbeit mit den experimentellen Bereichen, eine Herausforderung für die Theorie dar, mittels der gewonnenen Erkenntnisse zur konzeptionellen Planung der Experimente beizutragen (A. Fielicke, Dissertation, Humboldt-Universität zu Berlin, 2001). / In this work the transition metal and metal oxide clusters has been investigated with the aim of gaining a better insight into the mechanisms which govern their reactivity. The theoretical study of the structural and energetic properties of the clusters has been carried out within the framework of the density functional theory by means of a new family of gradient-corrected hybrid density functionals which has been coded for the first time into quantum chemistry packages. The theoretical findings stimulated the experimental investigation of the gas phase reactivity of these species which confirmed the correctness of the reaction mechanism models proposed (A. Fielicke, Doctoral Thesis, Humboldt-Universität zu Berlin, 2001).
8

Relativistic Density Functional Treatment of Magnetic Anisotropy

Zhang, Hongbin 23 November 2009 (has links) (PDF)
Spin-orbit coupling (SOC) reduces the spatial symmetry of ferromagnetic solids. That is, the physical properties of ferromagnetic materials are anisotropic, depending on the magnetization direction. In this thesis, by means of numerical calculations with full-relativistic density functional theory, we studied two kinds of physical properties: surface magnetic anisotropy energy (MAE) and anisotropic thermoelectric power due to Lifshitz transitions. After a short introduction to the full-relativistic density functional theory in Chapter 2, the MAE of ferromagnetic thin films is studied in Chapter 3. For such systems, separation of different contributions, such as bulk magnetocrystalline anisotropy (MCA) energy, shape anisotropy energy, and surface/interface anisotropy energy, is crucial to gain better understanding of experiments. By fitting our calculating results for thick slabs to a phenomenological model, reliable surface MAE could be obtained. Following this idea, we have studied the MAE of Co slabs with different geometries, focusing on the effects of orbital polarization correction (OPC). We found that the surface anisotropy is mainly determined by the geometry. While OPC gives better results of orbital moments, it overestimates the MAE. In the second part of Chapter3, the effects of electric fields on the MAE of L10 ferromagnetic thin films are studied. Using a simple model to simulate the electric field, our calculations are in good agreement with previous experimental results. We predicted that for CoPt, even larger effects exist. Moreover, we found that it is the amount of screening charge that determines the magnetoelectric coupling effects. This gives us some clue about how to achieve electric field control of magnetization direction. In Chapter 4, Lifshitz transitions in L10 FePt caused by a canted magnetic field are studied. We found several Lifshitz transitions in ordered FePt with tiny features in DOS. Using a two-band model, it is demonstrated that at such transitions, the singular behaviour of kinetic properties is due to the interband scattering, and the singularity itself is proportional to the derivative of the singular DOS. For FePt, such singularity will be smeared into anomaly by chemical disorder. Using CPA, we studied the effects of energy level broadening for the critical bands in FePt. We found that for experimentally available FePt thin films, Lifshitz transitions would induce up to a 3% increase of thermopower as the magnetization is rotated from the easy axis to the hard axis. / Spin-Bahn-Kopplung reduziert die Symmetrie ferromagnetischer Festkörper. Das bedeutet, dass die physikalischen Eigenschaften ferromagnetischer Stoffe anisotrop bezüglich der Magnetisierungsrichtung sind. In dieser Dissertation werden mittels numerischer voll-relativistischer Dichtefunktional-Rechnungen zwei Arten physikalischer Eigenschaften untersucht: magnetische Oberflächen-Anisotropieenergie (MAE) und anisotrope Thermokraft durch Lifshitz-Übergänge. Nach einer kurzen Einführung in die relativistische Dichtefunktional-Theorie in Kapitel 2 wird in Kapitel 3 die MAE ferromagnetischer dünner Filme untersucht. In diesen Systemen ist es für ein Verständnis experimenteller Ergebnisse wichtig, verschiedene Beiträge zu separieren: Volumenanteil der magnetokristallinen Anisotropie (MCA), Formanistropie und Oberflächen bzw. Grenzflächenanisotropie. Durch Anpassen berechneter Daten für dicke Schichten an ein phänomenologisches Modell konnten verlässliche Oberflächen Anisotropien erhalten werden. In dieser Weise wurde die MAE von Co- Schichten mit unterschiedlichen Geometrien untersucht, wobei der Einfluss von Orbitalpolarisations-Korrekturen (OPC) im Vordergrund stand. Es wurde gefunden, dass die Oberflächenanisotropie hauptsächlich von der Geometrie bestimmt wird. Während OPC bessere Ergebnisse für die Orbitalmomente liefert, wird die MAE überschätzt. Im zweiten Teil von Kapitel 3 wird der Einfluss elektrischer Felder auf die MAE von dünnen ferromagnetischen Filmen mit L10-Struktur untersucht. Unter Verwendung eines einfachen Modells zur Simulation des elektrischen Feldes liefern die Rechnungen gute Übereinstimmung mit vorliegenden experimentellen Ergebnissen. Es wird vorhergesagt, dass für CoPt ein noch größerer Effekt existiert. Weiterhin wurde gefunden, dass die magnetoelektrische Kopplung von der Größe der Abschirmladung bestimmt wird. Dies ist eine wichtige Einsicht, um die Magnetisierungsrichtung durch ein elektrisches Feld kontrollieren zu können. In Kapitel 4 werden Lifshitz-Übergänge untersucht, die ein gekantetes Magnetfeld hervorruft. Es wurden mehrere Lifshitz-Übergänge in geordnetem FePt gefunden, welche kleine Anomalien in der Zustandsdichte hervorrufen. Mit Hilfe eines Zweiband-Modells wird gezeigt, dass an solchen Übergängen das singuläre Verhalten kinetischer Eigenschaften durch Interband- Streuung verursacht wird und dass die Singularität proportional zur Ableitung der singulären Zustandsdichte ist. In FePt wird durch chemische Unordnung diese Singularität zu einer Anomalie verschmiert. Der Einfluss einer Verbreiterung der Energieniveaus der kritischen Bänder in FePt wurde mittels CPA untersucht. Es wurde gefunden, dass in experimentell verfügbaren dünnen FePt-Filmen Lifshitz-Übergänge bis zu 3% Erhöhung der Thermokraft erzeugen, wenn die Magnetisierung von der leichten in die harte Richtung gedreht wird.
9

Relativistic Density Functional Treatment of Magnetic Anisotropy

Zhang, Hongbin 09 October 2009 (has links)
Spin-orbit coupling (SOC) reduces the spatial symmetry of ferromagnetic solids. That is, the physical properties of ferromagnetic materials are anisotropic, depending on the magnetization direction. In this thesis, by means of numerical calculations with full-relativistic density functional theory, we studied two kinds of physical properties: surface magnetic anisotropy energy (MAE) and anisotropic thermoelectric power due to Lifshitz transitions. After a short introduction to the full-relativistic density functional theory in Chapter 2, the MAE of ferromagnetic thin films is studied in Chapter 3. For such systems, separation of different contributions, such as bulk magnetocrystalline anisotropy (MCA) energy, shape anisotropy energy, and surface/interface anisotropy energy, is crucial to gain better understanding of experiments. By fitting our calculating results for thick slabs to a phenomenological model, reliable surface MAE could be obtained. Following this idea, we have studied the MAE of Co slabs with different geometries, focusing on the effects of orbital polarization correction (OPC). We found that the surface anisotropy is mainly determined by the geometry. While OPC gives better results of orbital moments, it overestimates the MAE. In the second part of Chapter3, the effects of electric fields on the MAE of L10 ferromagnetic thin films are studied. Using a simple model to simulate the electric field, our calculations are in good agreement with previous experimental results. We predicted that for CoPt, even larger effects exist. Moreover, we found that it is the amount of screening charge that determines the magnetoelectric coupling effects. This gives us some clue about how to achieve electric field control of magnetization direction. In Chapter 4, Lifshitz transitions in L10 FePt caused by a canted magnetic field are studied. We found several Lifshitz transitions in ordered FePt with tiny features in DOS. Using a two-band model, it is demonstrated that at such transitions, the singular behaviour of kinetic properties is due to the interband scattering, and the singularity itself is proportional to the derivative of the singular DOS. For FePt, such singularity will be smeared into anomaly by chemical disorder. Using CPA, we studied the effects of energy level broadening for the critical bands in FePt. We found that for experimentally available FePt thin films, Lifshitz transitions would induce up to a 3% increase of thermopower as the magnetization is rotated from the easy axis to the hard axis. / Spin-Bahn-Kopplung reduziert die Symmetrie ferromagnetischer Festkörper. Das bedeutet, dass die physikalischen Eigenschaften ferromagnetischer Stoffe anisotrop bezüglich der Magnetisierungsrichtung sind. In dieser Dissertation werden mittels numerischer voll-relativistischer Dichtefunktional-Rechnungen zwei Arten physikalischer Eigenschaften untersucht: magnetische Oberflächen-Anisotropieenergie (MAE) und anisotrope Thermokraft durch Lifshitz-Übergänge. Nach einer kurzen Einführung in die relativistische Dichtefunktional-Theorie in Kapitel 2 wird in Kapitel 3 die MAE ferromagnetischer dünner Filme untersucht. In diesen Systemen ist es für ein Verständnis experimenteller Ergebnisse wichtig, verschiedene Beiträge zu separieren: Volumenanteil der magnetokristallinen Anisotropie (MCA), Formanistropie und Oberflächen bzw. Grenzflächenanisotropie. Durch Anpassen berechneter Daten für dicke Schichten an ein phänomenologisches Modell konnten verlässliche Oberflächen Anisotropien erhalten werden. In dieser Weise wurde die MAE von Co- Schichten mit unterschiedlichen Geometrien untersucht, wobei der Einfluss von Orbitalpolarisations-Korrekturen (OPC) im Vordergrund stand. Es wurde gefunden, dass die Oberflächenanisotropie hauptsächlich von der Geometrie bestimmt wird. Während OPC bessere Ergebnisse für die Orbitalmomente liefert, wird die MAE überschätzt. Im zweiten Teil von Kapitel 3 wird der Einfluss elektrischer Felder auf die MAE von dünnen ferromagnetischen Filmen mit L10-Struktur untersucht. Unter Verwendung eines einfachen Modells zur Simulation des elektrischen Feldes liefern die Rechnungen gute Übereinstimmung mit vorliegenden experimentellen Ergebnissen. Es wird vorhergesagt, dass für CoPt ein noch größerer Effekt existiert. Weiterhin wurde gefunden, dass die magnetoelektrische Kopplung von der Größe der Abschirmladung bestimmt wird. Dies ist eine wichtige Einsicht, um die Magnetisierungsrichtung durch ein elektrisches Feld kontrollieren zu können. In Kapitel 4 werden Lifshitz-Übergänge untersucht, die ein gekantetes Magnetfeld hervorruft. Es wurden mehrere Lifshitz-Übergänge in geordnetem FePt gefunden, welche kleine Anomalien in der Zustandsdichte hervorrufen. Mit Hilfe eines Zweiband-Modells wird gezeigt, dass an solchen Übergängen das singuläre Verhalten kinetischer Eigenschaften durch Interband- Streuung verursacht wird und dass die Singularität proportional zur Ableitung der singulären Zustandsdichte ist. In FePt wird durch chemische Unordnung diese Singularität zu einer Anomalie verschmiert. Der Einfluss einer Verbreiterung der Energieniveaus der kritischen Bänder in FePt wurde mittels CPA untersucht. Es wurde gefunden, dass in experimentell verfügbaren dünnen FePt-Filmen Lifshitz-Übergänge bis zu 3% Erhöhung der Thermokraft erzeugen, wenn die Magnetisierung von der leichten in die harte Richtung gedreht wird.
10

Electronic Transport Properties of Copper and Gold at Atomic Scale / Elektronische Transporteigenschaften von Kupfer und Gold auf atomarer Skala

Mohammadzadeh, Saeideh 15 December 2010 (has links) (PDF)
The factors governing electronic transport properties of copper and gold atomic-size contacts are theoretically examined in the present work. A two-terminal conductor using crystalline electrodes is adopted. The non-equilibrium Green’s function combined with the density functional tight-binding method is employed via gDFTB simulation tool to calculate the transport at both equilibrium and non-equilibrium conditions. The crystalline orientation, length, and arrangement of electrodes have very weak influence on the electronic characteristics of the considered atomic wires. The wire width is found to be the most effective geometric aspect determining the number of conduction channels. The obtained conductance oscillation and linear current-voltage curves are interpreted. To analyze the conduction mechanism in detail, the transmission channels and their decomposition to the atomic orbitals are calculated in copper and gold single point contacts. The presented results offer a possible explanation for the relation between conduction and geometric structure. Furthermore, the results are in good agreement with available experimental and theoretical studies. / In der vorliegenden Arbeit werden die wesentlichen Faktoren, die die elektronischen Transporteigenschaften von Kontaktstrukturen atomarer Größe aus Kupfer bzw. Gold bestimmen, theoretisch untersucht. Untersuchungsgegenstand ist eine leitfähige Struktur zwischen zwei kristallinen Elektroden. Um Transportberechungen sowohl unter Gleichgewichts- als auch unter Nicht-Gleichgewichts-Bedingungen durchführen zu können, wird die Simulations-Software gDFTB, die auf dem Nicht-Gleichgewichts-Green-funktionenformalismus in Kombination mit der Dichtefunktional-Tight-Binding-Methode beruht, eingesetzt. Die elektronischen Eigenschaften der betrachteten atomaren Drähte werden nur sehr schwach von ihrer kristallinen Orientierung, ihrer Länge und der Elektrodenanordnung beeinflusst. Als effektivster geometrischer Faktor wurde der Leiterquerschnitt gefunden, weil dieser die Anzahl der Leitungskanäle bestimmt. Darüber hinaus werden die erhaltenen Leitfähigkeitsoszillationen und die linearen Strom-Spannungs-Kennlinien erklärt. Für eine detaillierte Analyse des Leitungsmechanismus werden bei den Ein-Atom-Kontakten aus Kupfer und Gold die Übertragungskanäle und ihre Aufspaltung in Atomorbitale betrachtet. Die präsentierten Ergebnisse bieten eine mögliche Erklärung für den Zusammenhang zwischen Leitfähigkeit und geometrischer Struktur. Die Resultate zeigen eine akzeptable Übereinstimmung mit den verfügbaren experimentellen und theoretischen Studien.

Page generated in 0.0934 seconds