• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Traits fonctionnels, tolérances et distributions des espèces herbacées sur un gradient de disponibilité en eau : une approche prédictive par modèle d'équation structurale

Belluau, Michaël January 2017 (has links)
L’assemblage des espèces (leurs présences/absence) dans une communauté naturelle est la conséquence de plusieurs mécanismes de filtrage réalisés par l'environnement. Parmi ces filtres, le filtre abiotique sélectionne les espèces capables de tolérer les conditions environnementales locales. La variation de la disponibilité de l'eau dans le sol est l'un des principaux gradients environnementaux selon lesquels les espèces végétales sont différemment réparties. Considérant l’hypothèse que les traits fonctionnels et leurs relations sont hiérarchisées, les préférences d’habitat des espèces le long de gradients environnementaux devraient être déterminées par une combinaison de traits physiologiques et morpho-anatomiques hiérarchisés. Au cours de ce doctorat, mon objectif général est d'identifier les traits fonctionnels morphologiques, anatomiques et physiologiques de tolérance à la sécheresse qui peuvent prédire la présence des espèces le long d'un gradient d’hydrologie des sols. Plus spécifiquement, nous cherchons à savoir : (i) Quels sont les traits physiologiques qui reflètent le mieux la tolérance à la sécheresse ? (ii) Quelles sont les relations entre les traits morpho-anatomiques et les traits physiologiques de tolérance ? (iii) Quels sont les traits morpho-anatomiques en conditions optimales permettant de prédire la tolérance des espèces herbacées à la sécheresse ? (iv) Quelles formes ont les relations qui existe entre les traits morpho-anatomiques de tolérance en condition optimale et la présence des espèces en cas de sécheresse ? (v) Peut-on prédire les présences des espèces en cas de sécheresse à partir de leurs traits morpho-anatomiques? Nos résultats montrent (1) qu’il est possible de prédire la distribution des espèces sur un gradient d’hydrologie des sols à partir de cinq traits physiologiques de tolérance à la sécheresse. Ces cinq traits sont la photosynthèse nette maximale, la conductance stomatique maximale, le potentiel hydrique du sol au point de flétrissement, la conductance stomatique au point de flétrissement et l’efficacité d’utilisation de l’eau au point de flétrissement. Nous avons montré que (ii) les traits physiologiques de tolérance à la sécheresse sont prédits par les traits morpho-anatomiques en conditions optimales (surface spécifique foliaire, teneur en matière sèche des feuilles, teneur en azote foliaire, longueur spécifique racinaire et surface stomatique). (iii) Les traits morpho-anatomiques seuls ne sont pas de bons prédicteurs de l’hydrologie des espèces et (iv) que la séquence « traits morpho-anatomiques → traits physiologiques → hydrologie des espèces » donne les meilleures prédictions. Cependant, (v) le modèle ne donne pas de prédictions fiables si l’on utilise des traits morpho-anatomiques mesurés en conditions naturelles. Ces résultats confirment, au moins partiellement, l’hypothèse que la distribution des espèces sur un gradient hydrologiques peut être prédite à partir de leurs traits de tolérance à la sécheresse eux-mêmes prédits par leurs traits morpho-anatomiques. En résumé, nous avons utilisé une approche fonctionnelle en construisant un modèle causal prédictif qui nous a permis de nous intéresser aux mécanismes de filtrage environnementaux et plus précisément au rôle de la niche hydrologique des espèces dans l’assemblage des communautés végétales. / Abstract : Species assembly (their presence/absence) in a natural community is the consequence of several filtering mechanisms made by the environment. Among these filters, the abiotic filter selects species able to tolerate local environmental conditions. Variation in water availability in the soil is one of the main environmental gradients according to which plant species are differently distributed. Considering the hypothesis that functional traits and their relationships are hierarchical, habitat preferences of species along environmental gradients should be determined by a combination of hierarchical physiological and morpho-anatomical traits. During this PhD, my overall goal is to identify morphological, anatomical and physiological drought tolerance functional traits that can predict the presence of species along a soil hydrology gradient. More specifically : (i) What are the physiological traits that best reflect drought tolerance? (ii) What are the relationships between morpho-anatomical traits and physiological traits of tolerance? (iii) What are the optimal morpho-anatomical traits for predicting tolerance of herbaceous species to drought? (iv) What forms of relationships exist between optimal morpho-anatomical traits of tolerance and the presence of species in drought condition? (v) Can the presence of species in drought condition be predicted from their morpho-anatomical features? Our results show (1) that it is possible to predict the distribution of species on a soil hydrology gradient from five physiological traits of drought tolerance. These five traits are maximum net photosynthesis, maximum stomatal conductance, water potential of the soil at the wilting point, stomatal conductance at the wilting point, and efficiency of water use at the wilting point. We have shown that (ii) the physiological traits of drought tolerance are predicted by optimal morpho-anatomical traits (leaf area, leaf dry matter content, leaf nitrogen content, root length and stomatal surface). (iii) Morpho-anatomical features alone are not good predictors of species hydrology and (iv) the sequence “morpho-anatomical traits  physiological traits  species hydrology” gives the best predictions. However (v) the model does not provide reliable predictions using morpho-anatomical traits measured under natural conditions. These results confirm, at least partially, the hypothesis that the distribution of species on a hydrological gradient can be predicted from their drought tolerance traits themselves predicted by their morpho-anatomical features. In summary, we used a functional approach by constructing a predictive causal model that allowed us to focus on environmental filtering mechanisms and more specifically on the role of the species hydrological niche in assembling plant communities.
2

Etude de la plasticité évolutive et structurale des génomes de plantes / Study of evolutionary and structural plasticity of plant genomes

Murat, Florent 22 July 2016 (has links)
Les angiospermes (ou plantes à fleurs) regroupent environ 350 000 espèces ayant divergé il y a 150 à 200 millions d’années en deux familles botaniques principales, les monocotylédones (les orchidées, les palmiers, les bananiers, les joncs, les graminées...) et les eudicotylédones (les Brassicaceae, les Rosaceae, les légumineuses...) représentant respectivement 20% et 75% des plantes à fleurs. Les angiospermes font l’objet de nombreux travaux de recherche, en particulier en génomique depuis 2000 avec le séquençage du premier génome de plantes (Arabidopsis thaliana) qui a précédé le décryptage des génomes d’un nombre important d’autres espèces modèles et/ou d’intérêt agronomique (environ 100 aujourd’hui). L’accès croissant à la séquence des génomes de plantes a permis de mettre à jour une importante diversité structurale de leur génome, en termes de taille physique, de nombre de chromosomes, de nombre de gènes et de richesse en éléments transposables. Les forces évolutives ayant permis une telle diversité structurale des génomes au cours de l’évolution sont au cœur des travaux de cette thèse. La paléogénomique se propose d’étudier à travers la reconstruction de génomes ancestraux, comment ces espèces ont divergé à partir d’ancêtres communs et quels mécanismes ont contribué à une telle plasticité de structure génomique. Dans cet objectif, les travaux de cette thèse ont mis en œuvre des méthodes basées sur la génomique comparée permettant l’étude de l’évolution structurale des génomes via la reconstruction des génomes ancestraux fondateurs des espèces modernes. Ainsi, un génome ancestral des angiospermes a été reconstruit constitué de 5 chromosomes et porteur de 6707 gènes ordonnés sur ceux-ci, permettant d’intégrer dans un même modèle les monocotylédones et les eudicotylédones et élucider leur histoire évolutive, notamment pour les espèces d’intérêt agronomique majeur telles que les céréales, les rosids et les Brassicaceae. L’inférence de ces génomes ancestraux des plantes modernes a permis l’identification et l’étude de l’impact des évènements de polyploïdie (doublement génomique), ubiquitaires chez les plantes. Nous avons montré que les génomes tendent à revenir à une structure diploïde suite à un évènement de polyploïdie. Cette diploïdisation structurale se fait au niveau caryotypique (par le biais de réarrangements chromosomiques impliquant la perte des centromères et télomères ancestraux) mais aussi géniques (par le biais de pertes de gènes ancestraux en double copies). Il a été montré que cette perte se faisait préférentiellement sur un des sous-génomes post-polyploïdie, menant au phénomène de « dominance des sous-génomes ». Ces biais de plasticité structurale (on parle de compartimentation de la plasticité) se font différentiellement entre les espèces, les chromosomes, les compartiments chromosomiques mais aussi les types de gènes, aboutissant à la diversité structurale observée entre les génomes modernes de plantes. Ces travaux qui rentrent dans le cadre de la recherche fondamentale ont également un fort aspect appliqué à travers la recherche translationnelle en ayant permis de créer des passerelles entre les différentes espèces travaillées en agriculture. Le passage d’une espèce à une autre via les génomes ancestraux fondateurs reconstruits permet notamment le transfert de connaissances des gènes ou de régions d’intérêt des espèces modèles aux espèces cultivées. Les travaux de thèse, par la reconstruction d’ancêtres, permettent une comparaison de haute-résolution des génomes de plantes et in fine l’étude de leur plasticité acquise au cours de l’évolution, et revêtent donc à la fois un aspect fondamental (pour comprendre l’évolution des espèces) mais aussi appliqué (pour l’amélioration des espèces d’intérêt agronomique à partir des modèles). / Angiosperms (or flowering plants) consist in approximatively 350 000 species that have diverged 150 to 200 million years ago in two main families, monocots (orchids, palm trees, banana, bulrushes, grasses...) and dicots (Brassicaceae, Rosaceae, legumes...) representing respectively 20% and 75% of flowering plants. Angiosperms are the subject of intense researches, in particular in genomics since 2000 with the sequence release of the first plant genome (Arabidopsis thaliana) preceding a large number of genomes of plant models and/or species of agronomical interest (around 100 today). Increasing access to plant genome sequences has allowed the identification of their structural diversity, in terms of genome size, number of chromosomes and genes as well as transposable element content. The evolutionary forces that have shaped such structural genomic divergence are at the center of this thesis. Our paleogenomics approach will investigate, through ancestral genome reconstructions, how modern species have diverged from common ancestors and which mechanisms have contributed to such present-day genome plasticity. In this thesis, we have developed methods based on comparative genomics to study plant genome evolution and reconstruct ancestral genomes, extinct progenitors of the modern angiosperm species. An ancestral angiosperm genome has been reconstructed made of 5 chromosomes and 6707 ordered genes allowing the integration in the same model of monocots and eudicots and finally elucidating evolutionary trajectories for species of major agricultural interest such as cereals, rosids and Brassicaceae. The reconstructed paleohistory of modern flowering plants enabled the identification as well as the investigation of the impact of polyploidy events (WGD, whole genome duplications), ubiquitous in plants, as a major driver of the observed structural plasticity of angiosperms. We established that genomes tend to return to a diploid status following a polyploidy event. This structural diploidization is performed at the karyotypic level through chromosomal rearrangements (involving ancestral centromeres and telomeres losses) as well as the gene level (through ancestral duplicates loss). It has been shown that this diploidization is preferentially done on one of the post-polyploidy subgenome, leading to the "sub-genome dominance" phenomenon. This structural plasticity bias (also referenced as plasticity partitioning) is acting differentially between species, chromosomes, chromosomal compartments, gene types, resulting in the structural diversity observed between the present-day plant genomes. This thesis is clearly within the scope of fundamental researches but also has a strong applied objective through translational research in creating bridges between species of major relevance for agriculture. The comparison of one species to another through the reconstructed ancestral genomes allows transferring knowledge gained on genes or any region of interest from model species to crops. Paleogenomics, in reconstructing ancestral genome and unveiling the forces driving modern plant genome plasticity, is therefore of fundamental (toward understanding species evolution) but also applied (toward improving orphan species from knowledge gained in models) objectives.

Page generated in 0.0487 seconds