Spelling suggestions: "subject:"diferenciação hematopoéticas"" "subject:"diferenciação hematopoiética""
1 |
Geração de células-tronco pluripotentes induzidas (hiPSCs) a partir de células somáticas de indivíduos com fenótipo de interesse para transfusões sanguíneas / Generation of induced pluripotent stem cells (hiPSCs) from somatic cells of individuals with interesting phenotypes for blood transfusionCatelli, Lucas Ferioli 28 November 2016 (has links)
A demanda por transfusões sanguíneas tem aumentado no Brasil e o número de doações de sangue permanecem insuficientes. Há escassez de componentes de sangue para transfusão, principalmente de concentrados de células vermelhas do sangue. As células-tronco pluripotentes induzidas humanas (hiPSCs) possuem um grande potencial para se tornar uma fonte de CÉLULAS VERMELHAS DO SANGUE, pois podem se diferenciar em qualquer tipo celular, incluindo CÉLULAS VERMELHAS DO SANGUE de fenótipo específico. O objetivo deste trabalho é a geração de hiPSCs para partir de células mononucleares de sangue periférico (PBMCs) de candidatos a doação de sangue que possuem fenótipo eritrocitário de baixa imunogenicidade, bem como a diferenciação eritroide das hiPSCs geradas. As amostras de sangue periférico (PB) de 11 indivíduos foram coletadas e caracterizadas quanto ao genótipo para os seguintes antígenos eritrocitários: Sistema Rh (RHCE*01/RHCE*02/RHCE*03/RHCE*04/RHCE*05), Kell (KEL*01/KEL*02), Duffy (FY*01/FY*02 and FY*02N.01), Kidd (JK*01/JK*02) e MNS (GYPB*03/GYPB*04). Outros antígenos de grupos sanguíneos distintos foram determinados por meio de fenotipagem. Duas amostras (PBMCs PB02 e PB12) foram selecionadas para a reprogramação devido ausência de múltiplos antígenos eritrocitários e, portanto, considerados de baixa imunogenicidade. Os PBMCs foram enriquecidos em eritroblastos e em seguida, as células foram transfectadas com os vetores episomais pEB-C5 e pEB-Tg e então, co-cultivados sobre fibroblastos de embriões murinos (MEFs) até o surgimento de colônias semelhantes a hiPSCs (hiPSC PB02 e hiPSC PB12). Estas colônias foram transferidas para condições de cultivo próprias e posteriormente caracterizadas quanto à sua pluripotência. A expressão dos genes de pluripotência OCT4, SOX2 e NANOG demonstrou níveis de expressão maior em comparação às linhagens não pluripotentes. As análises de imunofenotipagem por citometria de fluxo revelaram que em torno de 86% das células expressaram Nanog, 88% Oct4 e 88% Sox2. Os níveis de expressão de genes de pluripotência e marcadores foram consistentes com o estado indiferenciado encontrado em células pluripotentes conhecidas. A análise funcional para avaliação da pluripotência foi realizado pela injeção das hiPScs em camundongos imunodeficientes, demonstrando a formação de teratoma nas linhagens geradas. A metodologia para diferenciação hematopoética das hiPSCs geradas a partir dos corpos embrioides estão em progresso. O potencial de diferenciação foi confirmado durante a padronização deste processo, utilizando ensaio de formação de colônias em metilcelulose. Uma média de 10,5 colônias de precursores eritroide foram obtidas a partir de 50x103 hiPSC PB02 em diferenciação e uma colônia mista (mieloide e linfoide) a partir de 15x103 hiPSC PB12 foram obtidas. Neste trabalho foi possível gerar duas linhagens de hiPSCs com fenótipos de antígenos eritrocitários de interesse que podem ser mantidas em cultura por um longo período (26 passagens) e demonstram um potencial de diferenciação hematopoética. / The demand for blood transfusion has increased in Brazil and the number of blood donations remains insufficient. Therefore, there is a shortage of blood components for transfusion, mainly concentrates of red blood cells (RBCs). Human induced pluripotent stem cells (hiPSCs) have great potential to become a source of RBCs, because they can differentiate into every cellular type, including RBCs of a particular phenotype. The objective of this work was to generate hiPSC from mononuclear cells of peripheral blood (PBMCs) from blood donors who presented low immunogenic phenotype for transfusion, and erythroid differentiation of the generated hiPSCs. Peripheral blood samples from 11 individuals were collected and characterized for the following erythrocyte antigens: Rh system (RHCE*01/RHCE*02/RHCE*03/RHCE*04/RHCE*05), Kell (KEL*01/KEL*02), Duffy (FY*01/FY*02 and FY*02N.01), Kidd (JK*01/JK*02), MNS (GYPB*03/GYPB*04). Additionally, other antigens of different blood groups were determined by phenotyping. The samples PBMC PB02 and PBMC PB12 were chosen for iPS generation due to their multiple negative erythrocyte antigens. They were isolated, expanded into erythroblasts, and transfected using the reprogramming episomal vectors PEB-C5 and PEB-Tg. This population was co-cultured on mouse embryonic fibroblasts (MEFs) until the appearance of hiPSC like colonies (hiPSC PB02 and hiPSC PB12). These colonies were transferred to human embryonic stem cells (hESCs) culture conditions and characterized regarding their pluripotency. The expression of OCT4, SOX2 and NANOG pluripotency genes demonstrated that the expression of both lineages was higher in comparison with non-pluripotent lineages. Immunophenotyping performed by flow cytometry revealed that 86% of cells expressed Nanog, 88% Oct4 and 88% Sox2. Expression levels of pluripotency genes and markers were consistent with undifferentiated state found in known pluripotent cells. Functional analysis for pluripotency was achieved by the hiPSC injection in immunodeficient mice showing that both hiPSC cell lines were able to induce teratoma tumor. The hematopoietic differentiation potential was confirmed using methylcellulose assay, with an average of 10.5 erythroid colonies from 50x103 single cells and a mixed colonies of myeloid and lymphoid cells) and finally a colony composed of white cells from 15x103 PB12 hiPSC. In conclusion, it was possible to generate a hiPSC from a red blood cell phenotype that are negative for multiple antigens, and this cell line can be maintained for a long period in culture (26 passages) and show potential for hematopoietic differentiation.
|
2 |
Geração de células-tronco pluripotentes induzidas (hiPSCs) a partir de células somáticas de indivíduos com fenótipo de interesse para transfusões sanguíneas / Generation of induced pluripotent stem cells (hiPSCs) from somatic cells of individuals with interesting phenotypes for blood transfusionLucas Ferioli Catelli 28 November 2016 (has links)
A demanda por transfusões sanguíneas tem aumentado no Brasil e o número de doações de sangue permanecem insuficientes. Há escassez de componentes de sangue para transfusão, principalmente de concentrados de células vermelhas do sangue. As células-tronco pluripotentes induzidas humanas (hiPSCs) possuem um grande potencial para se tornar uma fonte de CÉLULAS VERMELHAS DO SANGUE, pois podem se diferenciar em qualquer tipo celular, incluindo CÉLULAS VERMELHAS DO SANGUE de fenótipo específico. O objetivo deste trabalho é a geração de hiPSCs para partir de células mononucleares de sangue periférico (PBMCs) de candidatos a doação de sangue que possuem fenótipo eritrocitário de baixa imunogenicidade, bem como a diferenciação eritroide das hiPSCs geradas. As amostras de sangue periférico (PB) de 11 indivíduos foram coletadas e caracterizadas quanto ao genótipo para os seguintes antígenos eritrocitários: Sistema Rh (RHCE*01/RHCE*02/RHCE*03/RHCE*04/RHCE*05), Kell (KEL*01/KEL*02), Duffy (FY*01/FY*02 and FY*02N.01), Kidd (JK*01/JK*02) e MNS (GYPB*03/GYPB*04). Outros antígenos de grupos sanguíneos distintos foram determinados por meio de fenotipagem. Duas amostras (PBMCs PB02 e PB12) foram selecionadas para a reprogramação devido ausência de múltiplos antígenos eritrocitários e, portanto, considerados de baixa imunogenicidade. Os PBMCs foram enriquecidos em eritroblastos e em seguida, as células foram transfectadas com os vetores episomais pEB-C5 e pEB-Tg e então, co-cultivados sobre fibroblastos de embriões murinos (MEFs) até o surgimento de colônias semelhantes a hiPSCs (hiPSC PB02 e hiPSC PB12). Estas colônias foram transferidas para condições de cultivo próprias e posteriormente caracterizadas quanto à sua pluripotência. A expressão dos genes de pluripotência OCT4, SOX2 e NANOG demonstrou níveis de expressão maior em comparação às linhagens não pluripotentes. As análises de imunofenotipagem por citometria de fluxo revelaram que em torno de 86% das células expressaram Nanog, 88% Oct4 e 88% Sox2. Os níveis de expressão de genes de pluripotência e marcadores foram consistentes com o estado indiferenciado encontrado em células pluripotentes conhecidas. A análise funcional para avaliação da pluripotência foi realizado pela injeção das hiPScs em camundongos imunodeficientes, demonstrando a formação de teratoma nas linhagens geradas. A metodologia para diferenciação hematopoética das hiPSCs geradas a partir dos corpos embrioides estão em progresso. O potencial de diferenciação foi confirmado durante a padronização deste processo, utilizando ensaio de formação de colônias em metilcelulose. Uma média de 10,5 colônias de precursores eritroide foram obtidas a partir de 50x103 hiPSC PB02 em diferenciação e uma colônia mista (mieloide e linfoide) a partir de 15x103 hiPSC PB12 foram obtidas. Neste trabalho foi possível gerar duas linhagens de hiPSCs com fenótipos de antígenos eritrocitários de interesse que podem ser mantidas em cultura por um longo período (26 passagens) e demonstram um potencial de diferenciação hematopoética. / The demand for blood transfusion has increased in Brazil and the number of blood donations remains insufficient. Therefore, there is a shortage of blood components for transfusion, mainly concentrates of red blood cells (RBCs). Human induced pluripotent stem cells (hiPSCs) have great potential to become a source of RBCs, because they can differentiate into every cellular type, including RBCs of a particular phenotype. The objective of this work was to generate hiPSC from mononuclear cells of peripheral blood (PBMCs) from blood donors who presented low immunogenic phenotype for transfusion, and erythroid differentiation of the generated hiPSCs. Peripheral blood samples from 11 individuals were collected and characterized for the following erythrocyte antigens: Rh system (RHCE*01/RHCE*02/RHCE*03/RHCE*04/RHCE*05), Kell (KEL*01/KEL*02), Duffy (FY*01/FY*02 and FY*02N.01), Kidd (JK*01/JK*02), MNS (GYPB*03/GYPB*04). Additionally, other antigens of different blood groups were determined by phenotyping. The samples PBMC PB02 and PBMC PB12 were chosen for iPS generation due to their multiple negative erythrocyte antigens. They were isolated, expanded into erythroblasts, and transfected using the reprogramming episomal vectors PEB-C5 and PEB-Tg. This population was co-cultured on mouse embryonic fibroblasts (MEFs) until the appearance of hiPSC like colonies (hiPSC PB02 and hiPSC PB12). These colonies were transferred to human embryonic stem cells (hESCs) culture conditions and characterized regarding their pluripotency. The expression of OCT4, SOX2 and NANOG pluripotency genes demonstrated that the expression of both lineages was higher in comparison with non-pluripotent lineages. Immunophenotyping performed by flow cytometry revealed that 86% of cells expressed Nanog, 88% Oct4 and 88% Sox2. Expression levels of pluripotency genes and markers were consistent with undifferentiated state found in known pluripotent cells. Functional analysis for pluripotency was achieved by the hiPSC injection in immunodeficient mice showing that both hiPSC cell lines were able to induce teratoma tumor. The hematopoietic differentiation potential was confirmed using methylcellulose assay, with an average of 10.5 erythroid colonies from 50x103 single cells and a mixed colonies of myeloid and lymphoid cells) and finally a colony composed of white cells from 15x103 PB12 hiPSC. In conclusion, it was possible to generate a hiPSC from a red blood cell phenotype that are negative for multiple antigens, and this cell line can be maintained for a long period in culture (26 passages) and show potential for hematopoietic differentiation.
|
3 |
Geração de célulastronco/progenitoras hematopoéticas e progenitores eritroides a partir de células-tronco de pluripotência induzida derivadas de pacientes com anemia falciforme / Generation of hematopoietic stem/progenitor cells and erythroid progenitor cells from induced pluripotent stem cells derived from patients with sickle cell anemiaPaes, Bárbara Cristina Martins Fernandes 18 October 2018 (has links)
As células-tronco de pluripotência induzida (iPSC) são células geradas a partir da reprogramação de células somáticas e têm potencial para diferenciação em todos os tipos celulares do organismo adulto. A indução da diferenciação de iPSC pacienteespecífico em células hematopoéticas é uma forma de estudo da hematopoese em modelos de doenças, como a anemia falciforme, e também essencial para o desenvolvimento de terapias. O presente estudo propôs a geração de célulastronco/progenitoras hematopoéticas e progenitores eritroides in vitro a partir de iPSC derivadas de pacientes com anemia falciforme através da formação de corpos embrioides. Ao longo da diferenciação, os desenvolvimentos hematopoético e eritroide foram monitorados através de ensaios de formação de colônia e imunofenotipagem por citometria de fluxo. Neste estudo, demonstramos a presença de células com fenótipo de células endoteliais no início da diferenciação hematopoética por formação de corpos embrioides, possivelmente indicando que as células progenitoras hematopoéticas são provenientes de um endotélio hemogênico. Também verificamos a presença de células endoteliais sem potencial de endotélio hemogênico. Geramos células com características de células-tronco/progenitoras hematopoéticas, de fenótipos CD34+CD45+ e CD45+CD43+, progenitores eritroides (CD36+, CD71+ e CD235a+), bem como a formação de colônias hematopoéticas em cultura em meio semi-sólido. A linhagem de iPSC PBscd08 demonstrou maior potencial para diferenciação em células hematopoéticas e eritroide que as demais linhagens celulares avaliadas. A linhagem PBscd01, também gerada a partir de células mononucleares do sangue periférico (PBMC) de paciente com anemia falciforme, não demonstrou o mesmo potencial para a diferenciação hematopoética, gerando apenas células CD34+ e baixa porcentagem de células CD45+ e CD43+. A linhagem de iPSC PB12, gerada a partir de PBMC de indivíduo saudável, promoveu a geração de populações de células CD34+, CD45+ e CD43+, mas não duplo-positivas, e a geração de células com morfologia de células mieloides após a maturação. As linhagens celulares de iPSC demonstraram variabilidade quanto ao potencial de diferenciação hematopoética. Isto monstra a necessidade de estudos futuros para uma investigação mais detalhada. / Induced pluripotent stem cells (iPSC) are cells generated by reprogramming somatic cells, they have the potential for differentiation into all types of cells in the adult organism. The differentiation of patient-specific iPSC into hematopoietic cells is a way of studying hematopoiesis in disease models, such as sickle cell anemia, and is also essential for the development of therapies. The present study proposed the generation of hematopoietic stem/progenitor cells and erythroid progenitors from iPSC derived from patients with sickle cell anemia. Throughout the differentiation, hematopoietic and erythroid developments were monitored by colony forming cell assay and immunophenotypic analysis. In this study, we demonstrated the presence of cells with endothelial phenotype at the beginning of hematopoietic differentiation by formation of embryoid bodies, possibly showing that hematopoietic progenitor cells originate from a hemogenic endothelium. We generated cells with characteristics of hematopoietic stem/progenitor cells, of CD34+CD45+ and CD45+CD43+ phenotypes, erythroid progenitors (CD36+, CD71+ and CD235a+), as well as the formation of hematopoietic colonies in culture in semi-solid medium. The iPSC line PBscd08 demonstrated greater potential for differentiation into hematopoietic and erythroid cells than the other cell lines evaluated. The iPSC line PBscd01, also generated from peripheral blood mononuclear cells (PBMC) from patients with sickle cell anemia, did not demonstrate the same potential for hematopoietic differentiation, generating only CD34+ cells and a low percentage of CD45+ and CD43+ cells. The iPSC line PB12, generated from healthy individual PBMC, promoted the generation of CD34+, CD45+ and CD43+ cell populations, but not double-positives, and the generation of cells with myeloid cell morphology after maturation. The iPSC cell lines demonstrated variability in the potential for hematopoietic differentiation. This shows the need for future studies for a more detailed investigation.
|
4 |
Geração de célulastronco/progenitoras hematopoéticas e progenitores eritroides a partir de células-tronco de pluripotência induzida derivadas de pacientes com anemia falciforme / Generation of hematopoietic stem/progenitor cells and erythroid progenitor cells from induced pluripotent stem cells derived from patients with sickle cell anemiaBárbara Cristina Martins Fernandes Paes 18 October 2018 (has links)
As células-tronco de pluripotência induzida (iPSC) são células geradas a partir da reprogramação de células somáticas e têm potencial para diferenciação em todos os tipos celulares do organismo adulto. A indução da diferenciação de iPSC pacienteespecífico em células hematopoéticas é uma forma de estudo da hematopoese em modelos de doenças, como a anemia falciforme, e também essencial para o desenvolvimento de terapias. O presente estudo propôs a geração de célulastronco/progenitoras hematopoéticas e progenitores eritroides in vitro a partir de iPSC derivadas de pacientes com anemia falciforme através da formação de corpos embrioides. Ao longo da diferenciação, os desenvolvimentos hematopoético e eritroide foram monitorados através de ensaios de formação de colônia e imunofenotipagem por citometria de fluxo. Neste estudo, demonstramos a presença de células com fenótipo de células endoteliais no início da diferenciação hematopoética por formação de corpos embrioides, possivelmente indicando que as células progenitoras hematopoéticas são provenientes de um endotélio hemogênico. Também verificamos a presença de células endoteliais sem potencial de endotélio hemogênico. Geramos células com características de células-tronco/progenitoras hematopoéticas, de fenótipos CD34+CD45+ e CD45+CD43+, progenitores eritroides (CD36+, CD71+ e CD235a+), bem como a formação de colônias hematopoéticas em cultura em meio semi-sólido. A linhagem de iPSC PBscd08 demonstrou maior potencial para diferenciação em células hematopoéticas e eritroide que as demais linhagens celulares avaliadas. A linhagem PBscd01, também gerada a partir de células mononucleares do sangue periférico (PBMC) de paciente com anemia falciforme, não demonstrou o mesmo potencial para a diferenciação hematopoética, gerando apenas células CD34+ e baixa porcentagem de células CD45+ e CD43+. A linhagem de iPSC PB12, gerada a partir de PBMC de indivíduo saudável, promoveu a geração de populações de células CD34+, CD45+ e CD43+, mas não duplo-positivas, e a geração de células com morfologia de células mieloides após a maturação. As linhagens celulares de iPSC demonstraram variabilidade quanto ao potencial de diferenciação hematopoética. Isto monstra a necessidade de estudos futuros para uma investigação mais detalhada. / Induced pluripotent stem cells (iPSC) are cells generated by reprogramming somatic cells, they have the potential for differentiation into all types of cells in the adult organism. The differentiation of patient-specific iPSC into hematopoietic cells is a way of studying hematopoiesis in disease models, such as sickle cell anemia, and is also essential for the development of therapies. The present study proposed the generation of hematopoietic stem/progenitor cells and erythroid progenitors from iPSC derived from patients with sickle cell anemia. Throughout the differentiation, hematopoietic and erythroid developments were monitored by colony forming cell assay and immunophenotypic analysis. In this study, we demonstrated the presence of cells with endothelial phenotype at the beginning of hematopoietic differentiation by formation of embryoid bodies, possibly showing that hematopoietic progenitor cells originate from a hemogenic endothelium. We generated cells with characteristics of hematopoietic stem/progenitor cells, of CD34+CD45+ and CD45+CD43+ phenotypes, erythroid progenitors (CD36+, CD71+ and CD235a+), as well as the formation of hematopoietic colonies in culture in semi-solid medium. The iPSC line PBscd08 demonstrated greater potential for differentiation into hematopoietic and erythroid cells than the other cell lines evaluated. The iPSC line PBscd01, also generated from peripheral blood mononuclear cells (PBMC) from patients with sickle cell anemia, did not demonstrate the same potential for hematopoietic differentiation, generating only CD34+ cells and a low percentage of CD45+ and CD43+ cells. The iPSC line PB12, generated from healthy individual PBMC, promoted the generation of CD34+, CD45+ and CD43+ cell populations, but not double-positives, and the generation of cells with myeloid cell morphology after maturation. The iPSC cell lines demonstrated variability in the potential for hematopoietic differentiation. This shows the need for future studies for a more detailed investigation.
|
5 |
Eficiente produção in vitro de células-tronco/progenitoras hematopoéticas a partir da diferenciação de células-tronco embrionárias humanas / Eficient in vitro generation of human embryonic stem cells-derived hematopoietic stem/progenitor cellsCosta, Everton de Brito Oliveira 01 August 2016 (has links)
O transplante de células-tronco hematopoéticas (CTHs) é o tipo mais bem-sucedido de terapia celular realizado até os dias atuais. No entanto, apesar do sucesso e da relevância clínica das CTHs isoladas a partir de fontes adultas, o uso destas células tem algumas limitações em relação à sua disponibilidade, compatibilidade imunológica e risco de contaminação. Desse modo, busca-se o desenvolvimento de soluções para as dificuldades apontadas para suprir a demanda de transplantes. Uma abordagem emergente para superar este problema é baseada na cultura e diferenciação de células-tronco embrionárias humanas (CTEhs). Estas são célulastronco pluripotentes e indiferenciadas com elevada capacidade de auto-renovação e diferenciação em todas as células derivadas dos três folhetos germinativos. No entanto, os métodos de diferenciação utilizados para a produção de CTHs a partir de células pluripotentes ainda não são eficientes. Os protocolos descritos até o momento têm gerado números variados e populações de células heterogêneas, e produz apenas CTHs muito primitivas e imaturas com baixa capacidade funcional in vivo. Parte desta dificuldade pode decorrer da ineficiência do microambiente de cultura para a diferenciação. Neste trabalho, nós demonstramos um eficiente protocolo de diferenciação hematopoética baseado em cocultivo de CTEhs com fibroblastos embrionários murinos com alto rendimento na geração de célulastronco/progenitoras hematopoéticas (CTPHs) que expressam os antígenos CD45, CD43, CD31 e CD34, e apresentam potencial clonogênico in vitro equivalente ao de células mononucleares isoladas de sangue de cordão umbilical. Nós fomos capazes de produzir todas as células das linhagens eritróide e mielóide em diferentes estágios de maturação, como também células positivas para marcadores linfóides. Demonstramos ainda que as células hematopoéticas surgem no sistema de cultura a partir de um endotélio-hemogênico constituído por células CD34+CD31+. No entanto, apesar das características maduras das CTPHs obtidas por tal método, os ensaios de reconstituição hematopoiética mostraram que estas células ainda possuem limitada capacidade funcional de enxertamento em camundongos imunocomprometidos quando transplantadas por via retro-orbital. / Hematopoietic stem cells (HSC) transplant is the most successful type of cell therapy carried out to date. However, despite the success and the clinical relevance of HSC isolated from adult sources, these cells have some limitations regarding its availability, immunological compatibility and risk of contamination. Thus, we seek to develop solutions to overcome these difficulties to supply the demand for transplants. An emerging approach to overcome this problem is based on human embryonic stem cells (hESCs) culture and differentiation. These are pluripotent and undifferentiated stem cells with high capacity for self-renewal and differentiation in all cells derived from the three embryonic germ layers. However, differentiation methods used for HSC production from pluripotent cells are not efficient yet. Protocols described so far have generated varying numbers and heterogeneous cell populations, and produce only very primitive and immature HSC with low in vivo functional capacity. Part of this difficulty may result from the inefficiency of the microenvironment of culture for differentiation. Here, we demonstrate an efficient protocol based on co-culture of hESCs with mouse embryonic fibroblasts for hematopoietic differentiation with high performance to generate in vitro hematopoietic stem/progenitor cells (HSPCs) that express CD45, CD43, CD31 and CD34 antigens with high purity of positive cells. We were able to produce all cells of erythroid and myeloid lineages at different stages of maturation. Lymphoid potential of hematopoietic cells was also evidenced. We demonstrated the primitive origin of hematopoietic cells through capillary-like structures constituted by hemogenic CD34+CD31+ cells. However, despite mature features of HSPCs obtained by our protocol, hematopoietic reconstitution assays showed that these cells have yet limited functional capacity for grafting into immunocompromised mice when exogenously transplanted by retro-orbital route.
|
6 |
Eficiente produção in vitro de células-tronco/progenitoras hematopoéticas a partir da diferenciação de células-tronco embrionárias humanas / Eficient in vitro generation of human embryonic stem cells-derived hematopoietic stem/progenitor cellsEverton de Brito Oliveira Costa 01 August 2016 (has links)
O transplante de células-tronco hematopoéticas (CTHs) é o tipo mais bem-sucedido de terapia celular realizado até os dias atuais. No entanto, apesar do sucesso e da relevância clínica das CTHs isoladas a partir de fontes adultas, o uso destas células tem algumas limitações em relação à sua disponibilidade, compatibilidade imunológica e risco de contaminação. Desse modo, busca-se o desenvolvimento de soluções para as dificuldades apontadas para suprir a demanda de transplantes. Uma abordagem emergente para superar este problema é baseada na cultura e diferenciação de células-tronco embrionárias humanas (CTEhs). Estas são célulastronco pluripotentes e indiferenciadas com elevada capacidade de auto-renovação e diferenciação em todas as células derivadas dos três folhetos germinativos. No entanto, os métodos de diferenciação utilizados para a produção de CTHs a partir de células pluripotentes ainda não são eficientes. Os protocolos descritos até o momento têm gerado números variados e populações de células heterogêneas, e produz apenas CTHs muito primitivas e imaturas com baixa capacidade funcional in vivo. Parte desta dificuldade pode decorrer da ineficiência do microambiente de cultura para a diferenciação. Neste trabalho, nós demonstramos um eficiente protocolo de diferenciação hematopoética baseado em cocultivo de CTEhs com fibroblastos embrionários murinos com alto rendimento na geração de célulastronco/progenitoras hematopoéticas (CTPHs) que expressam os antígenos CD45, CD43, CD31 e CD34, e apresentam potencial clonogênico in vitro equivalente ao de células mononucleares isoladas de sangue de cordão umbilical. Nós fomos capazes de produzir todas as células das linhagens eritróide e mielóide em diferentes estágios de maturação, como também células positivas para marcadores linfóides. Demonstramos ainda que as células hematopoéticas surgem no sistema de cultura a partir de um endotélio-hemogênico constituído por células CD34+CD31+. No entanto, apesar das características maduras das CTPHs obtidas por tal método, os ensaios de reconstituição hematopoiética mostraram que estas células ainda possuem limitada capacidade funcional de enxertamento em camundongos imunocomprometidos quando transplantadas por via retro-orbital. / Hematopoietic stem cells (HSC) transplant is the most successful type of cell therapy carried out to date. However, despite the success and the clinical relevance of HSC isolated from adult sources, these cells have some limitations regarding its availability, immunological compatibility and risk of contamination. Thus, we seek to develop solutions to overcome these difficulties to supply the demand for transplants. An emerging approach to overcome this problem is based on human embryonic stem cells (hESCs) culture and differentiation. These are pluripotent and undifferentiated stem cells with high capacity for self-renewal and differentiation in all cells derived from the three embryonic germ layers. However, differentiation methods used for HSC production from pluripotent cells are not efficient yet. Protocols described so far have generated varying numbers and heterogeneous cell populations, and produce only very primitive and immature HSC with low in vivo functional capacity. Part of this difficulty may result from the inefficiency of the microenvironment of culture for differentiation. Here, we demonstrate an efficient protocol based on co-culture of hESCs with mouse embryonic fibroblasts for hematopoietic differentiation with high performance to generate in vitro hematopoietic stem/progenitor cells (HSPCs) that express CD45, CD43, CD31 and CD34 antigens with high purity of positive cells. We were able to produce all cells of erythroid and myeloid lineages at different stages of maturation. Lymphoid potential of hematopoietic cells was also evidenced. We demonstrated the primitive origin of hematopoietic cells through capillary-like structures constituted by hemogenic CD34+CD31+ cells. However, despite mature features of HSPCs obtained by our protocol, hematopoietic reconstitution assays showed that these cells have yet limited functional capacity for grafting into immunocompromised mice when exogenously transplanted by retro-orbital route.
|
7 |
Construção e análise funcional de vetores lentivirais de interesse biotecnológico / Construction and functional analysis of lentiviral vectors for biotechnological purposesVedoveli, Naiara Cristina Pulzi Saito 16 May 2016 (has links)
Vetores lentivirais são ferramentas fundamentais para modificação celular. Sua utilização ganhou destaque devido à capacidade desses em integrar ao genoma de células que estão ou não em divisão. Grande parte dos vetores desenvolvidos são derivados do genoma do Vírus da Imunodeficiência Humana (HIV-1), portanto, modificações foram necessárias a fim de evitar a formação de Partículas Competentes em Replicação (RCLs) e garantir uma utilização segura. Com as modificações, foram produzidos os vetores lentivirais de terceira geração utilizados atualmente. Esses vetores podem ser usados para expressão constitutiva de genes, produção de proteínas recombinantes, produção de animais transgênicos e terapia gênica. Com isso, torna-se necessário o desenvolvimento de vetores lentivirais para aplicação em pesquisa básica e ensaios clínicos. Dessa forma, o presente estudo teve por objetivo a construção de vetores de expressão lentivirais aplicáveis à: 1- expressão constitutiva de genes de interesse e 2-vetores com promotores específicos para expressão de proteínas em megacariócitos. Esse trabalho descreve a construção desses vetores, sua importância e discute suas possíveis aplicações. As sequências selecionadas para produção dos vetores foram: os genes Runx1C e VkorC1 e os promotores proPF4 e proITGA2b. Todas as sequências encontram-se clonadas em vetor de clonagem e estoques de bactérias com esses vetores congeladas em glicerol foram confeccionados. Para a confecção dos vetores lentivirais, o gene Runx1C foi subclonado no vetor lentiviral base p1054-CIGWS sob controle do promotor forte CMV, enquanto o promotor proITGA2b foi subclonado no vetor base p1054-FVIII, em substituição ao promotor CMV, de forma a controlar a expressão de FVIII. Os dois vetores produzidos apresentam ainda o gene para proteína verde GFP precedida do sítio de ligação do ribossomo IRES, com expressão controlada pelo mesmo promotor interno do vetor. O trabalho possibilitou, portanto, a produção de dois vetores lentivirais bi-cistrônicos: p1054-Runx1C e pL-proITGA2b-FVIII. A construção p1054-Runx1C ainda não foi sequenciada, mas foi confirmada por restrição enzimática e apresenta potencial para aplicação em estudos de diferenciação hematopoética. Já a construção pL-proITGA2b-FVIII foi sequenciada, porém sem confirmação da região de ligação do proITGA2b ao vetor. Reações de PCR e de restrição enzimática confirmaram a ligação e sequenciamento mostrou 67% de similaridade entre a região sequenciada e o promotor ITGA2b depositado no banco de dados. Análise funcional foi realizada através da transfecção desse vetor em células HEK-293T. As células transfectadas apresentaram expressão positiva para GFP e secreção de FVIII no sobrenadante celular, evidenciando que o promotor proITGA2b clonado no vetor encontra-se ativo. Esse vetor apresenta potencial para aplicação em terapia gênica para hemofilias, pois apresenta expressão do fator de coagulação direcionado a megacariócitos e plaquetas, células que estão diretamente relacionadas ao processo de coagulação, representando grandes veículos para secreção desses fatores. Ainda, os dois vetores lentivirais gerados apresentam segurança e eficiência elevadas, pois são vetores de terceira geração auto-inativantes (SIN) e apresentam elementos regulatórios que melhoram o transporte e integração do DNA ao genoma hospedeiro. / Lentiviral vectors are fundamental tools for cell modification that gained prominence due to their ability to integrate the genome of non-dividing cells. Most of developed lentiviral vectors are derived from the genome of Human Immunodeficiency Virus (HIV-1), so modifications were necessary in order to avoid the formation of Competent Replication Particles (RCLs) and ensure safer operations. The modifications led to development of third generation lentiviral vectors currently used. These vectors can be used for constitutive gene expression, production of recombinant protein, production of transgenic animals and gene therapy. It\'s evident the need to develop lentiviral vectors for application in basic research and clinical trials. Thus this study aimed to construct lentiviral expression vectors applicable to: 1- constitutive expression of genes of interest and 2-vectors with specific promoters for expression of proteins in megakaryocytes and platelets. This paper describes the construction of these vectors, their importance and discuss their possible applications. Sequences were selected for production of the vectors: genes Runx1C and VkorC1 and proPF4 and proITGA2b promoters. All four sequences are cloned into cloning vectors and stocks of bacteria with these vectors frozen in glycerol were prepared. Lentiviral vectors were engineered from subcloning the sequence Runx1C into the basic lentiviral vector p1054- CIGWS under control of the strong CMV promoter, and from subcloning proITGA2b promoter into p1054-FVIII basic vector, replacing the CMV promoter in order to control the expression of FVIII. Both vectors exhibit the green fluorescence protein GFP gene preceded by a ribosome binding site IRES under control of vector\'s internal promoter. Therefore, this work resulted in the production of two bi-cistronic lentiviral vectors: p1054-Runx1C and pLproITGA2b-FVIII. The p1054-Runx1C construction has not yet been sequenced, but it was confirmed by digestion and has potential for use in hematopoietic differentiation studies. Though, pL-proITGA2b-FVIII construct was sequenced, but the technique didn\'t allow to confirm the binding region between proITGA2b and the vector. Although PCR reaction and digestion confirmed the construction. Sequence analysis showed 67% similarity between the sequenced region and ITGA2b promoter deposited in the database. Functional analysis was performed by transfection of this vector in HEK-293T cells. The transfected cells showed positive expression of GFP and FVIII secretion in cell supernatant, indicating that the proITGA2b promoter cloned into the vector is active. This vector has potential usage in gene therapy for hemophilia, since it can be used to express coagulation factors in megakaryocytes and platelets and these cells are directly related to the clotting process, representing great vehicles for secretion of these factors. Even more, the two lentiviral vectors generated have higher safety and efficiency, as they are self-inactivating (SIN) third-generation vectors and have regulatory elements that enhance transport and integration of DNA into the host genome.
|
8 |
Construção e análise funcional de vetores lentivirais de interesse biotecnológico / Construction and functional analysis of lentiviral vectors for biotechnological purposesNaiara Cristina Pulzi Saito Vedoveli 16 May 2016 (has links)
Vetores lentivirais são ferramentas fundamentais para modificação celular. Sua utilização ganhou destaque devido à capacidade desses em integrar ao genoma de células que estão ou não em divisão. Grande parte dos vetores desenvolvidos são derivados do genoma do Vírus da Imunodeficiência Humana (HIV-1), portanto, modificações foram necessárias a fim de evitar a formação de Partículas Competentes em Replicação (RCLs) e garantir uma utilização segura. Com as modificações, foram produzidos os vetores lentivirais de terceira geração utilizados atualmente. Esses vetores podem ser usados para expressão constitutiva de genes, produção de proteínas recombinantes, produção de animais transgênicos e terapia gênica. Com isso, torna-se necessário o desenvolvimento de vetores lentivirais para aplicação em pesquisa básica e ensaios clínicos. Dessa forma, o presente estudo teve por objetivo a construção de vetores de expressão lentivirais aplicáveis à: 1- expressão constitutiva de genes de interesse e 2-vetores com promotores específicos para expressão de proteínas em megacariócitos. Esse trabalho descreve a construção desses vetores, sua importância e discute suas possíveis aplicações. As sequências selecionadas para produção dos vetores foram: os genes Runx1C e VkorC1 e os promotores proPF4 e proITGA2b. Todas as sequências encontram-se clonadas em vetor de clonagem e estoques de bactérias com esses vetores congeladas em glicerol foram confeccionados. Para a confecção dos vetores lentivirais, o gene Runx1C foi subclonado no vetor lentiviral base p1054-CIGWS sob controle do promotor forte CMV, enquanto o promotor proITGA2b foi subclonado no vetor base p1054-FVIII, em substituição ao promotor CMV, de forma a controlar a expressão de FVIII. Os dois vetores produzidos apresentam ainda o gene para proteína verde GFP precedida do sítio de ligação do ribossomo IRES, com expressão controlada pelo mesmo promotor interno do vetor. O trabalho possibilitou, portanto, a produção de dois vetores lentivirais bi-cistrônicos: p1054-Runx1C e pL-proITGA2b-FVIII. A construção p1054-Runx1C ainda não foi sequenciada, mas foi confirmada por restrição enzimática e apresenta potencial para aplicação em estudos de diferenciação hematopoética. Já a construção pL-proITGA2b-FVIII foi sequenciada, porém sem confirmação da região de ligação do proITGA2b ao vetor. Reações de PCR e de restrição enzimática confirmaram a ligação e sequenciamento mostrou 67% de similaridade entre a região sequenciada e o promotor ITGA2b depositado no banco de dados. Análise funcional foi realizada através da transfecção desse vetor em células HEK-293T. As células transfectadas apresentaram expressão positiva para GFP e secreção de FVIII no sobrenadante celular, evidenciando que o promotor proITGA2b clonado no vetor encontra-se ativo. Esse vetor apresenta potencial para aplicação em terapia gênica para hemofilias, pois apresenta expressão do fator de coagulação direcionado a megacariócitos e plaquetas, células que estão diretamente relacionadas ao processo de coagulação, representando grandes veículos para secreção desses fatores. Ainda, os dois vetores lentivirais gerados apresentam segurança e eficiência elevadas, pois são vetores de terceira geração auto-inativantes (SIN) e apresentam elementos regulatórios que melhoram o transporte e integração do DNA ao genoma hospedeiro. / Lentiviral vectors are fundamental tools for cell modification that gained prominence due to their ability to integrate the genome of non-dividing cells. Most of developed lentiviral vectors are derived from the genome of Human Immunodeficiency Virus (HIV-1), so modifications were necessary in order to avoid the formation of Competent Replication Particles (RCLs) and ensure safer operations. The modifications led to development of third generation lentiviral vectors currently used. These vectors can be used for constitutive gene expression, production of recombinant protein, production of transgenic animals and gene therapy. It\'s evident the need to develop lentiviral vectors for application in basic research and clinical trials. Thus this study aimed to construct lentiviral expression vectors applicable to: 1- constitutive expression of genes of interest and 2-vectors with specific promoters for expression of proteins in megakaryocytes and platelets. This paper describes the construction of these vectors, their importance and discuss their possible applications. Sequences were selected for production of the vectors: genes Runx1C and VkorC1 and proPF4 and proITGA2b promoters. All four sequences are cloned into cloning vectors and stocks of bacteria with these vectors frozen in glycerol were prepared. Lentiviral vectors were engineered from subcloning the sequence Runx1C into the basic lentiviral vector p1054- CIGWS under control of the strong CMV promoter, and from subcloning proITGA2b promoter into p1054-FVIII basic vector, replacing the CMV promoter in order to control the expression of FVIII. Both vectors exhibit the green fluorescence protein GFP gene preceded by a ribosome binding site IRES under control of vector\'s internal promoter. Therefore, this work resulted in the production of two bi-cistronic lentiviral vectors: p1054-Runx1C and pLproITGA2b-FVIII. The p1054-Runx1C construction has not yet been sequenced, but it was confirmed by digestion and has potential for use in hematopoietic differentiation studies. Though, pL-proITGA2b-FVIII construct was sequenced, but the technique didn\'t allow to confirm the binding region between proITGA2b and the vector. Although PCR reaction and digestion confirmed the construction. Sequence analysis showed 67% similarity between the sequenced region and ITGA2b promoter deposited in the database. Functional analysis was performed by transfection of this vector in HEK-293T cells. The transfected cells showed positive expression of GFP and FVIII secretion in cell supernatant, indicating that the proITGA2b promoter cloned into the vector is active. This vector has potential usage in gene therapy for hemophilia, since it can be used to express coagulation factors in megakaryocytes and platelets and these cells are directly related to the clotting process, representing great vehicles for secretion of these factors. Even more, the two lentiviral vectors generated have higher safety and efficiency, as they are self-inactivating (SIN) third-generation vectors and have regulatory elements that enhance transport and integration of DNA into the host genome.
|
Page generated in 0.0788 seconds