Spelling suggestions: "subject:"diffeomorphism"" "subject:"diffeomorphisms""
1 |
Periodic Points and Surfaces Given by Trace MapsJohnston, Kevin Gregory 01 June 2016 (has links)
In this thesis, we consider the properties of diffeomorphisms of R3 called trace maps. We begin by introducing the definition of the trace map. The group B3 acts by trace maps on R3. The first two chapters deal with the action of a specific element of B3,called αn. In particular, we study the fixed points of αn lying on a topological subspace contained in R3, called T . We investigate the duality of the fixed points of the action ofαn, which will be defined later in the thesis.Chapter 3 involves the study of the fixed points of an element called γnm, and it generalizes the results of chapter 2. Chapter 4 involves a study of the period two points of γnm. Chapters 5-8 deal with surfaces and curves induced by trace maps, in a manner described in chapter 5. Trace maps define surfaces, and we study the intersection of those surfaces. In particular, we classify each such possible intersection.
|
2 |
The diffeomorphism fieldKilic, Delalcan 01 May 2018 (has links)
The diffeomorphism field is introduced to the physics literature in [1] where it arises as a background field coupled to Polyakov’s quantum gravity in two dimensions, where Einstein’s gravity is trivial. Moreover, it is seen in many ways as the gravitational analog of the Yang-Mills field. This raises the question of whether the diffeomorphism field exists in higher dimensions, playing an essential role in gravity either by supplementing Einstein’s theory or by modifying it.
With this motivation, several distinct theories governing the dynamics of the diffeomorphism field have been constructed and developed by mimicking the construction of the Yang-Mills theory from the Kac-Moody algebra. This analogy, however, is not perfect and there are many subtleties and difficulties encountered.
This thesis constitutes a further development. The previously proposed theories are carefully examined; certain subtleties and problems in them have been discovered and made apparent. Some of these problems have been solved, and for others possible routes to follow have been laid down. Finally, other geometric approaches than the ones followed before are investigated.
|
3 |
On The Algebraic Structure Of Relative Hamiltonian Diffeomorphism GroupDemir, Ali Sait 01 January 2008 (has links) (PDF)
Let M be smooth symplectic closed manifold and L a
closed Lagrangian submanifold of M. It was shown by Ozan that
Ham(M,L): the relative Hamiltonian diffeomorphisms on M fixing the
Lagrangian submanifold L setwise is a subgroup which is equal to
the kernel of the restriction of the flux homomorphism to the
universal cover of the identity component of the relative
symplectomorphisms.
In this thesis we show that Ham(M,L) is a non-simple perfect
group, by adopting a technique due to Thurston, Herman, and
Banyaga. This technique requires the diffeomorphism group be
transitive where this property fails to exist in our case.
|
4 |
Mechanics of the diffeomorphism fieldHeitritter, Kenneth I.J. 01 May 2019 (has links)
Coadjoint orbits of Lie algebras come naturally imbued with a symplectic two-form allowing for the construction of dynamical actions. Consideration of the coadjoint orbit action for the Kac-Moody algebra leads to the Wess-Zumino-Witten model with a gauge-field coupling. Likewise, the same type of coadjoint orbit construction for the Virasoro algebra gives Polyakov’s 2D quantum gravity action with a coupling to a coadjoint element, D, interpreted as a component of a field named the diffeomorphism field. Gauge fields are commonly given dynamics through the Yang-Mills action and, since the diffeomorphism field appears analogously through the coadjoint orbit construction, it is interesting to pursue a dynamical action for D.
This thesis reviews the motivation for the diffeomorphism field as a dynamical field and presents results on its dynamics obtained through projective connections. Through the use of the projective connection of Thomas and Whitehead, it will be shown that the diffeomorphism field naturally gains dynamics. Results on the analysis of this dynamical theory in two-dimensional Minkowski background will be presented.
|
5 |
Linking Forms, Singularities, and Homological Stability for Diffeomorphism Groups of Odd Dimensional ManifoldsPerlmutter, Nathan 18 August 2015 (has links)
Let n > 1. We prove a homological stability theorem for the
diffeomorphism groups of (4n+1)-dimensional manifolds, with respect
to forming the connected sum with (2n-1)-connected,
(4n+1)-dimensional manifolds that are stably parallelizable.
Our techniques involve the study of the action of the diffeomorphism group of a manifold M on the linking form associated to the homology groups of M.
In order to study this action we construct a geometric model for the linking form using the intersections of embedded and immersed Z/k-manifolds.
In addition to our main homological stability theorem, we prove several results regarding disjunction for embeddings and immersions of Z/k-manifolds that could be of independent interest.
|
6 |
Spectral spread and non-autonomous Hamiltonian diffeomorphisms / spectral spreadと自励的ではないハミルトン微分同相写像についてSugimoto, Yoshihiro 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第21541号 / 理博第4448号 / 新制||理||1639(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)教授 小野 薫, 教授 向井 茂, 教授 望月 拓郎 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
7 |
One-Dimensional Dynamics: from Poincaré to Renormalization / Endimensionell dynamik: från Poincaré till omnormaliseringDong, Yiheng January 2023 (has links)
Renormalization is a powerful tool showing up in different contexts of mathematics and physics. In the context of circle diffeomorphisms, the renormalization operator acts like a microscope and allows to study the dynamics of a circle diffeomorphism on a small scale. The convergence of renormalization leads to a proof of the so-called rigidity theorem, which classifies the dynamics of circle diffeomorphisms geometrically: the conjugacy between $C^3$ circle diffeomorphism with Diophantine rotation number and the corresponding rotation is $C^1$. In this thesis, we define the renormalization of circle diffeomorphisms and study its dynamics. In particular, we prove that the renormalization of orientation preserving $C^3$ circle diffeomorphisms with irrational rotation number of bounded type converges to rotations at exponential speed. We also introduce the necessary relevant concepts such as rotation number, distortion and non-linearity and discuss some of their properties. This thesis is a summary and supplement to the book One-Dimensional Dynamics: from Poincaré to Renormalization. / Omnormalisering är en kraftfull teknik som dyker upp i olika sammanhang inom matematik och fysik. I samband med cirkeldiffeomorfier är omnormaliseringsoperatorn ett dynamiskt system, som fungerar som ett mikroskop och gör att vi kan studera dynamiken hos en cirkeldiffeomorfi på en liten skala. Omnormaliseringens konvergens leder till ett bevis för det så kallade rigiditetssatsen, som klassificerar dynamiken hos cirkeldiffeomorfier geometriskt: konjugatet mellan $C^3$ cirkeldiffeomorfi med diofantiska rotationstal och den motsvarande rotationen är $C^1$. I denna avhandling definierar vi omnormaliseringen av cirkeldiffeomorfier och studerar dess dynamik. I synnerhet bevisar vi att omnormaliseringen av orienteringsbevarande $C^3$ cirkeldiffeomorfier med irrationellt rotationstal av begränsad typ konvergerar till rotationer med exponentiell hastighet. Vi introducerar också nödvändiga och relevanta begrepp så som rotationstal, distorsion och icke-linjäritet och diskuterar några av deras egenskaper. Denna avhandling är en sammanfattning och ett komplement till boken One- Dimensional Dynamics: from Poincaré to Renormalization.
|
8 |
Sobre a integrabilidade de subfibrados invariantes de codimensão um de skew-products parcialmente hiperbólicos / On the integrability of codimension one invariant subbundles of partially hyperbolic skew-productsLemes, Ricardo Chicalé 06 April 2018 (has links)
Submitted by RICARDO CHICALÉ LEMES (ricardo.chicale@hotmail.com) on 2018-04-30T03:23:42Z
No. of bitstreams: 1
Tese-ricardo-c-lemes.pdf: 655598 bytes, checksum: 16e0af2e8792589ebe2a3ec7b9a7162f (MD5) / Approved for entry into archive by Elza Mitiko Sato null (elzasato@ibilce.unesp.br) on 2018-05-02T19:47:51Z (GMT) No. of bitstreams: 1
lemes_rc_do_int.pdf: 655598 bytes, checksum: 16e0af2e8792589ebe2a3ec7b9a7162f (MD5) / Made available in DSpace on 2018-05-02T19:47:51Z (GMT). No. of bitstreams: 1
lemes_rc_do_int.pdf: 655598 bytes, checksum: 16e0af2e8792589ebe2a3ec7b9a7162f (MD5)
Previous issue date: 2018-04-06 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Neste trabalho mostramos que não existe skew-product de contato parcialmente hiperbólico no toro de dimensão 3 cuja dinâmica na base é dada por um difeomorfismo de Anosov e a ação nas fibras é dada por rotações cujos ângulos são funções cobordo do toro de dimensão 2 no círculo. / In this work we prove that there is no contact partially hyperbolic skew-product F : T2 S1 ! T2 S1 of the form F(p; t) = (f(p); t + (p)), where f is an Anosov diffeomorphism and 2 Cr(T2) is a coboundary.
|
9 |
Classical Foundations for a Quantum Theory of Time in a Two-Dimensional SpacetimeCarruth, Nathan Thomas 01 May 2010 (has links)
We consider the set of all spacelike embeddings of the circle S1 into a spacetime R1 × S1 with a metric globally conformal to the Minkowski metric. We identify this set and the group of conformal isometries of this spacetime as quotients of semidirect products involving diffeomorphism groups and give a transitive action of the conformal group on the set of spacelike embeddings. We provide results showing that the group of conformal isometries is a topological group and that its action on the set of spacelike embeddings is continuous. Finally, we point out some directions for future research.
|
10 |
Controle em cascata de um atuador hidráulico utilizando redes neuraisBorges, Fábio Augusto Pires January 2017 (has links)
No presente trabalho, é realizada a modelagem e identificação de um serovoposicionador hidráulico de uma bancada de testes. As expressões analíticas tradicionalmente utilizadas em uma estratégia em cascata aplicada ao controle de trajetória de posição são obtidas. A estratégia em questão utiliza, conjuntamente, a linearização por realimentação como lei de controle do subsistema hidráulico e a lei de controle de Slotine e Li no subsistema mecânico. Com base na mesma estratégia, um controlador em cascata neural é proposto. Em tal controlador, a função analítica que representa o mapa inverso, presente na linearização por realimentação, e a função de compensação de atrito utilizada na lei de Slotine e Li são substituídas por funções constituidas por meio de redes neurais de perceptrons de múltiplas camadas. Essas redes neurais têm como entradas os estados do sistema e também a temperatura do fluido hidráulico. O novo controlador é apresentado em uma versão onde as redes neurais são aplicadas sem modificações on-line e em outra, onde são apresentadas leis de controle adaptativo para as mesmas. A prova de estabilidade do sistema em malha fechada é apresentada em ambos os casos. Resultados experimentais do controle de seguimento de trajetórias de posição em diferentes temperaturas do fluido hidráulico são apresentados. Esses resultados demonstram a maior efetividade do controlador proposto em relação aos controladores clássicos PID e PID+feefforward e ao controlador em cascata com funções analíticas fixas. Os experimentos são realizados em duas situações: quando não ocorrem variações paramétricas importantes no sistema, onde é utilizado o controlador em cascata neural fixo e quando ocorrem essas variações, onde se utiliza o controlador em cascata neural adaptativo. / In this work, the modeling and identification of a hydraulic actuator testing setup are performed and the analytical expressions that are used in a cascade control strategy applyied in a position trajectory tracking control are designed. Such cascade strategy uses the feedback linearization control law in the hydraulical subsystem and the Slotine and Li control law in the mechanical one. Based on this cascade strategy, a neural cascade controller is proposed, for which the analytical function used as inversion set in the feedback linearization control law and the friction function compensation of the Slotine and Li control law are replaced by multi layer perceptrons neural networks where the inputs are the states of the system and the hydraulic fluid temperature. The novel controller is introduced in two different aproachs: the first one where the neural networks do not have on-line modifications and the second one where adaptive control laws are proposed. For both of them the stability proof of the closed-loop system is presented. Experimental results about some position tracking controls performed in different fluid temperature are showed. The results show that the novel controller is more efective than the classical PID, PID+feedforward and the traditional analytical cascade controller. The experiments are performed in two different setups: considering the system without importants parametric variations where is applied the non adaptive cascade neural controller and in the presence of parametric variations where is applied the adaptive cascade neural controller.
|
Page generated in 0.0279 seconds