Spelling suggestions: "subject:"differentiable"" "subject:"ifferentiable""
91 |
Máquinas de somar estocásticas e conjuntos de Julia /Caprio, Danilo Antonio. January 2015 (has links)
Orientador: Ali Messaoudi / Banca: Eduardo Garibaldi / Banca: Sylvain Philippe Pierre Bonnot / Banca: Paulo Ricardo da Silva / Banca: Márcio Ricardo Alves Gouveia / Resumo: Neste trabalho, definimos a máquina de somar estocástica relacionada à base de Fibonacci e a uma sequência de probabilidades (Pi) i>1. Obtemos uma cadeia de Markov cujo estados são o conjunto dos inteiros não-negativos. Estudamos propriedades probabilísticas dessa cadeia, como transiência e recorrência. Mostramos também que o espectro associado a essa cadeia de Markov está relacionado ao conjunto de Julia fibrado de uma classe de endomorfismos em C 2. Além disso, estudamos propriedades dinâmicas e topológicas de uma classe de endomorfismos de C 2 (ou R 2). Precisamente, as aplicações consideradas são fn(x, y) = ( x y+ cn, x), onde cn E2 C (ou cn E R), para todo n>0 / Abstract: In this work we define a stochastic adding machine associated to the Fibonacci baseand to a probabilities sequence (Pi) i>1. We obtain a Markov chain whose states are the set of nonnegative integers. We study probabilistic properties of this chain, such as transience and recurrence. We also prove that the spectrum associated to this Markov chain is connected to the filled Julia sets for a class of endomorphisms in C 2. Furthermore, we study topological and dynamical properties of a class of endomorphisms of C 2 (or R 2). Precisely, the considered maps are fn(x, y) = (x y + cn, x), where cn 2 C (or cn E R), for all n>0 / Doutor
|
92 |
Propriedades de escala e cascatas de bifurcações em mapas unidimensionais discretos /Mendonça, Hans Muller Junho de. January 2018 (has links)
Orientador: Juliano Antonio de Oliveira / Banca: Edson Denis Leonel / Banca: Tiago Pereira da Silva / Resumo: Neste trabalho estudamos o decaimento das órbitas para os pontos fixos em bifurcações distintas em mapeamentos unidimensionais não lineares discretos. Consideramos o mapa Gauss, analisamos o diagrama de órbitas e estudamos o decaimento das trajetórias para o ponto de equilíbrio nas bifurcações tangente e de duplicação de período. Encontramos analítica e numericamente o conjunto de expoentes críticos que descrevem propriedades de escala nas bifurcações e próximos delas. Estes expoentes caracterizam o tipo de bifurcação do problema. Estudamos, também, eventos chamados crises de fronteiras, que ocorrem a partir de determinado valor do parâmetro de controle $\nu$. Estendemos nossos estudos considerando o mapa Hassell e introduzimos uma perturbação no problema. Assim como no mapa Gauss, analisamos nestes sistemas o diagrama de órbitas, os decaimentos das trajetórias para os pontos fixos nas bifurcações transcríticas e investigamos analítica e numericamente para determinar os expoentes críticos destas bifurcações. Com o intuito de investigar os efeitos da perturbação paramétrica introduzida ao mapa Hassell, construímos e analisamos as trajetórias no espaço de parâmetros. Utilizamos, como ferramentas, as órbitas superestáveis e extremas. Nas duas classes de mapas (Gauss e Hassell), caracterizamos o caos via expoentes de Lyapunov. Mostramos, também que, quando obtidos os expoentes críticos e utilizando transformações de escalas apropriadas nos eixos coordenados, todas as curvas de de... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: In this work we study the decay of the orbits to the xed points in di erent bifurcations of nonlinear discrete one-dimensional mappings. We consider the Gauss map and analyze the orbit diagram to study the convergence of the trajectories to the equilibrium point at the fold and ip bifurcation. We nd numerically and analytically the set of critical exponents that describe some scaling properties at the bifurcations and near them. These critical exponents can also characterize which types of bifurcations that arises from the problem in question. We also study particular events called boundary crisis that occur from above a speci c value of the control parameter . We continue the studies considering the Hassell map and its perturbed version. Just like in the Gauss map, we analyze the orbit diagrams within these systems, as well as the convergence of the orbits to the xed points at the transcritical bifurcations, while also investigating numerically and analytically to determine the speci c critical exponents of those bifurcations. With parametric perturbation added to the Hassell map, we build and analyze the trajectories on the parameter space. We apply, as tools, the superstable and extreme orbits. In the two classes of the maps (Gauss and Hassell), we quantify the chaos by Lyapunov exponents. After the critical exponents are obtained, using convenient scale transformations in the coordinate axes we show that all the curves of decay to the xed points are collapsed into a univ... (Complete abstract click electronic access below) / Mestre
|
93 |
O pêndulo duplo caótico : resultados experimentais e simulações numéricas /Boscolo, Ana Laura. January 2018 (has links)
Orientador: Luiz Antonio Barreiro / Banca: Edson Denis Leonel / Banca: Emanuel Fernandes de Lima / Resumo: Esta dissertação teve por objetivo abordar os principais assuntos referentes a dinâmica não-linear de um pêndulo duplo, como estudo das trajetórias no espaço de fase obtidas para condições iniciais periódicas (modos normais do pêndulo duplo) e para condições iniciais que impliquem em trajetórias caóticas, estudo dos expoentes de Lyapunov e seções de Poincaré do sistema. Para esta análise utilizou-se de simulações numéricas realizadas no software Mathematica bem como estudo a partir de um pêndulo duplo experimental filmado a partir de imagens estroboscópicas digitais, as quais foram devidamente tratadas no software Tracker e posteriormente analisadas no software Mathematica. Efetuou-se o estudo da ação de uma força externa aplicada por um motor no pêndulo duplo experimental a partir da qual foi possível obter-se uma aproximação do experimento real sujeito a forças dissipativas com a dinâmica efetuada por um pêndulo duplo ideal, sendo este um dos fatores que justifica-se a utilização das equações que regem o pêndulo duplo ideal para o problema que estava sendo estudado (pêndulo real), devido a energia ser mantida consideravelmente constante durante os testes realizados / Abstract: This study aims to address the main issues regarding the nonlinear dynamics of the dissipative and forced double pendulum as well as the dissipative pendulum with ideal pendulum approximation at short time intervals (0 to 10s of lming).We investigate some properties of the phase space under di erent initial conditions, of the Lyapunov exponents indicativing Chaos of the system and of the Poincaré sections allowing us to obtain detailed information about the complex dynamics that occurs in the quadrimensional phase space of the double pendulum. We observed that for short time the dynamics of the double pendulum can be approximated by the ideal pendulum since the loss of energy was minimal moreover the introduction of an external force in the system compensated for the loss of energy by the action of the dissipative forces making it possible to a more complete analyzes of the dynamics as the study of the section of Poincaré in the system could be performed. It was noticed that the theoretical results widely studied are similar to the experimental results therefore emphasizing the importance of this methodology in the study of chaotic systems / Mestre
|
94 |
Controle de dissociação molecular com ferramentas de dinâmica não linear /Almeida Junior, Allan Kardec de. January 2014 (has links)
Orientador: Ricardo Egydio de Carvalho / Banca: Emanuel Fernandes de Lima / Banca: Leonardo Kleber Castelano / Resumo: O objetivo principal deste trabalho é utilizar a teoria de dinâmica não linear no controle da dissociação molecular através da introdução da dissipação em um modelo já bem conhecido na literatura, que consiste em um potencial de interação interatômico e uma perturbação na forma de interação dipolo - campo elétrico. Tal campo elétrico pode ser proveniente dos fótons, pois a incidência de fótons já mostrou ser uma ferramenta efetiva na dissociação molecular. Primeiramente, o estudo mostra a possibilidade de controle de dissociação sem dissipação para condições bastante específicas, em seguida tais condições são generalizadas com a introdução da dissipação, tais como condições iniciais, tempo de exposição à perturbação e possíveis valores dos parâmetros de controle (constantes nas equações de movimento), mostrando os benefícios que a dissipação pode trazer no controle e na descrição da dissociação molecular. O sistema é confinado em um atrator cuja energia seja suficiente para que haja dissociação caso o mesmo esteja submetido somente ao potencial de interação de Morse. É realizada também uma varredura nos parâmetros de controle, no intuito de mostrar que a dissociação também pode ser controlada em uma ampla gama de valores para estes parâmetros. Este trabalho ainda faz um estudo baseado na probabilidade de dissociação como função de cada parâmetro de controle, de maneira que os resultados deste são comparados com resultados de outros trabalhos já conhecidos na literatura / Abstract: The main objective of this work is to use the nonlinear dynamics theory in the control of the molecular dissociation through the introduction of dissipation in a literature well-known model that consists of an interatomic interaction potential and of a perturbation given by the interaction between the molecule dipole - electric field. This field may be from the photons, because the incidence of photons has already proved to be an effective tool in molecular dissociation. First of all, the study shows the possibility of the dissociation control without dissipation in very specific conditions. These conditions are generalized as the work makes the introduction of the dissipation, like the initial conditions, exposure time to the perturbation and possible values of the control parameters (constants in the motion equations), showing the benefits the dissipation can bring to the control and to the description of the molecular dissociation. The system is trapped in an attractor whose energy is enough to bring dissociation in case it is subjected to only the Morse potential interaction. This study also sweeps the parameters in order to show that the dissociation can also be controlled to a wide range of the values of the control parameters. This work makes a study based in the dissociation probability as a function of each control parameter so the results of this work can be compared with results of other works already known in the literature / Mestre
|
95 |
Convergência para estados assintóticos em mapeamentos unidimensionais /Rando, Danilo Silva. January 2016 (has links)
Orientador: Edson Denis Leonel / Banca: Juliano Antônio de Oliveira / Banca: Ana Paula Mijolaro / Resumo: Neste trabalho investigaremos o comportamento do decaimento e relaxação para os pontos de equilíbrio, em especial em pontos de bifurcação, para uma família de mapeamentos discretos unidimensionais do tipo logístic-like. Faremos uma análise para três tipos de bifurcação: (i) transcrítica; (ii) forquilha e; (iii) duplicação de período. Discutiremos algumas hipóteses de escala que conduzem a uma lei de escala envolvendo três expoentes críticos. Próximo ao ponto fixo, a variável dinâmica varia muito lentamente. Essa propriedade permite transformar uma equação de diferenças, natural do mapeamento discreto, em uma equação diferencial ordinária (EDO). Resolvemos esta equação que fornece a evolução para o estado estacionário. Nossas simulações numéricas confirmam a previsão teórica e valida a aproximação acima mencionada / Abstract: In this work we investigate the behavior of the decay and relaxation to the equilibrium,especially at the bifurcation, for a family of one-dimensional discrete mappings, logistic-like. Our investigation consider three types of bifurcation: (i) transcritical; (ii) pitchforkand; (iii) period doubling. We discuss some scaling hypotheses leading to a scaling lawinvolving three critical exponents. Near the fixed points, the dynamical variable variesvery slowly. This property allows us to transform the equation of differences, hencenatural from discrete mappings, into an ordinary differential equation (ODE). We solvesuch equation which furnishes the evolution towards the stationary state. Our numericalsimulations confirm the theoretical results validating the above mentioned approximation / Mestre
|
96 |
Forced Brakke flowsGraham, David(David Warwick),1976- January 2003 (has links)
For thesis abstract select View Thesis Title, Contents and Abstract
|
97 |
Forced Brakke flowsGraham, David (David Warwick), 1976- January 2003 (has links)
Abstract not available
|
98 |
Flow past a cylinder close to a free surfaceReichl, Paul,1973- January 2001 (has links)
Abstract not available
|
99 |
Mean curvature flow with free boundary on smooth hypersurfacesBuckland, John A. (John Anthony), 1978- January 2003 (has links)
Abstract not available
|
100 |
Development and implementation of real-time distributed network with the CAN protocolFord, Walter Davis. Gravagne, Ian A. January 2005 (has links)
Thesis (M.S.)--Baylor University, 2005. / Includes bibliographical references (p. 120-121).
|
Page generated in 0.0581 seconds