• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 9
  • 8
  • 6
  • 6
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 87
  • 87
  • 25
  • 17
  • 14
  • 14
  • 12
  • 12
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Variétés de drapeaux et opérateurs différentiels

Jauffret, Colin 11 1900 (has links)
Soit G un groupe algébrique semi-simple sur un corps de caractéristique 0. Ce mémoire discute d'un théorème d'annulation de la cohomologie supérieure du faisceau D des opérateurs différentiels sur une variété de drapeaux de G. On démontre que si P est un sous-groupe parabolique de G, alors H^i(G/P,D)=0 pour tout i>0. On donne en fait trois preuves indépendantes de ce théorème. La première preuve est de Hesselink et n'est valide que dans le cas où le sous-groupe parabolique est un sous-groupe de Borel. Elle utilise un argument de suites spectrales et le théorème de Borel-Weil-Bott. La seconde preuve est de Kempf et n'est valide que dans le cas où le radical unipotent de P agit trivialement sur son algèbre de Lie. Elle n'utilise que le théorème de Borel-Weil-Bott. Enfin, la troisième preuve est attribuée à Elkik. Elle est valide pour tout sous-groupe parabolique mais utilise le théorème de Grauert-Riemenschneider. On présente aussi une construction détaillée du faisceau des opérateurs différentiels sur une variété. / Let G be a semisimple algebraic group on a field of characteristic 0. This thesis discusses a vanishing theorem for the higher cohomology of the sheaf D of differential operators on a flag variety of G. We show that if P is a parabolic subgroup of G, then H^i(G/P,D)=0 for all i>0. In fact, we give three independent proofs of this theorem. The first proof, due to Hesselink, only works if the parabolic subgroup P is a Borel subgroup. It uses a spectral sequence argument as well as the Borel-Weil-Bott theorem. The second proof, due to Kempf, only works if the unipotent radical of P acts trivially on its Lie algebra. It only uses the Borel-Weil-Bott theorem. Finally, the third proof, due to Elkik, is valid for any parabolic subgroup. However, it uses the Grauert-Riemenschneider theorem. We also present a detailled construction of the sheaf of differential operators on a variety.
52

Variétés de drapeaux et opérateurs différentiels

Jauffret, Colin 11 1900 (has links)
Soit G un groupe algébrique semi-simple sur un corps de caractéristique 0. Ce mémoire discute d'un théorème d'annulation de la cohomologie supérieure du faisceau D des opérateurs différentiels sur une variété de drapeaux de G. On démontre que si P est un sous-groupe parabolique de G, alors H^i(G/P,D)=0 pour tout i>0. On donne en fait trois preuves indépendantes de ce théorème. La première preuve est de Hesselink et n'est valide que dans le cas où le sous-groupe parabolique est un sous-groupe de Borel. Elle utilise un argument de suites spectrales et le théorème de Borel-Weil-Bott. La seconde preuve est de Kempf et n'est valide que dans le cas où le radical unipotent de P agit trivialement sur son algèbre de Lie. Elle n'utilise que le théorème de Borel-Weil-Bott. Enfin, la troisième preuve est attribuée à Elkik. Elle est valide pour tout sous-groupe parabolique mais utilise le théorème de Grauert-Riemenschneider. On présente aussi une construction détaillée du faisceau des opérateurs différentiels sur une variété. / Let G be a semisimple algebraic group on a field of characteristic 0. This thesis discusses a vanishing theorem for the higher cohomology of the sheaf D of differential operators on a flag variety of G. We show that if P is a parabolic subgroup of G, then H^i(G/P,D)=0 for all i>0. In fact, we give three independent proofs of this theorem. The first proof, due to Hesselink, only works if the parabolic subgroup P is a Borel subgroup. It uses a spectral sequence argument as well as the Borel-Weil-Bott theorem. The second proof, due to Kempf, only works if the unipotent radical of P acts trivially on its Lie algebra. It only uses the Borel-Weil-Bott theorem. Finally, the third proof, due to Elkik, is valid for any parabolic subgroup. However, it uses the Grauert-Riemenschneider theorem. We also present a detailled construction of the sheaf of differential operators on a variety.
53

(Konformní) Killingovy spinor hodnotové formy na Riemannovských varietách / (Conformal) Killing spinor valued forms on Riemannian manifolds

Zima, Petr January 2014 (has links)
The goal of the present thesis is to introduce on a Riemannian Spin- manifold a system of partial differential equations for spinor-valued differ- ential forms called Killing equations. We study basic properties of several types of Killing fields and relationships among them. We provide a simple construction of Killing spinor-valued forms from Killing spinors and Killing forms. We also review the construction of metric cone and discuss the re- lationship between Killing spinor-valued forms on the base manifold and parallel spinor-valued forms on the metric cone.
54

Ideais de anéis de operadores diferenciais / Ideals of rings of differential operators

Tuesta, Napoleon Caro 07 April 2011 (has links)
Em [12] J.T. Stafford demonstrou que todo ideal à esquerda ou à direita da álgebra de Weyl \'A IND. n\' (K) = K \'[ \'x IND. 1\', ...,\'x IND. n\' ] \' partial IND. 1\', ... \'partial IND. n\' (K um corpo de característica zero) é gerado por dois elementos. Consideremos o anel \'D IND. n\' := K [[\'x IND.1\', ...\'x IND. n\']] de operadores diferenciais sobre o anel de séries de potências formais K[[\'x IND. 1\';...\' xI ND. n\']]. Uma pergunta natural é se todo ideal à esquerda ou à direita de\' D IND. n\'(K) pode ser gerado por dois elementos. Neste trabalho provaremos que todo ideal à esquerda ou à direita do anel \'E IND. n\'(K) := K((\'x IND. 1\' ... \'x IND. n\'))(\' partial IND. 1, ...\'partial IND. n\') de operadores diferenciais sobre o corpo das séries de Laurent K((\'x IND. 1\', ...\'x IND. n\')) é gerado por dois elementos. Nós provaremos também que todo ideal à esquerda ou à direita do anel \'S IND. n -1\'(K) := K((\'x IND. 1\', ...\'X ind. n - 1\"))[[\'x IND. n\']](\' partial IND. 1, ...\'partial IND. n\') é gerado por dois elementos e como corolário obtemos uma demonstração que todo ideal à esquerda ou à direita do anel \'D IND. 1\'(K) é gerado por dois elementos. Isto está de acordo com a conjectura que diz que todo ideal à esquerda ou à direita de um anel (não comutativo) Noetheriano simples é gerado por dois elementos / In [12] J.T. Stafford proved that every left or right ideal of the Weyl algebra \'A IND. n\'(K) = K[\'x IND. 1\', ...\'x IND. n\'](\' partial IND. 1, ...\'partial IND. n\')(K a field of characteristic zero) is generated by two elements. Consider the ring \'D IND. n\' := K[[\'x IND. 1\', ...\'x IND.n\']](\'partial IND. 1\", ...\'partial IND. n) of differential operators over the ring of formal power series K[[\'x IND. 1\', ... \'x IND. n\']]: A natural question is that if every left or right ideal of \'D IND. n\'(K) can be generated by two elements. In this work we will prove that every left or right ideal of the ring \'E IND. n\' (K) := K((\'x IND. 1\', ... \'x IND. n\'))(\'partial IND. 1,...\'partial IND. n\') of differential operators over the field of formal Laurent series K((\'x IND. 1\', ...\'x IND. n\'))) is generated by two elements. We will prove also that every left or right ideal of the ring \'S IND. n -1\"(K) := K((\'x IND. 1\', ...\'x IND. n\'-1\'))[[\'x IND. n]](\'paertial IND. 1, ...\'partial IND. n\') is generated by two elements and as a corollary we obtain a proof of that every left or right ideal of the ring \'D IND. 1\'(K) is generated by two elements. This is in accordance with the conjecture that says that in a (noncommutative) Noetherian simple ring, every left or right ideal is generated by two elements
55

Ideais de anéis de operadores diferenciais / Ideals of rings of differential operators

Napoleon Caro Tuesta 07 April 2011 (has links)
Em [12] J.T. Stafford demonstrou que todo ideal à esquerda ou à direita da álgebra de Weyl \'A IND. n\' (K) = K \'[ \'x IND. 1\', ...,\'x IND. n\' ] \' partial IND. 1\', ... \'partial IND. n\' (K um corpo de característica zero) é gerado por dois elementos. Consideremos o anel \'D IND. n\' := K [[\'x IND.1\', ...\'x IND. n\']] de operadores diferenciais sobre o anel de séries de potências formais K[[\'x IND. 1\';...\' xI ND. n\']]. Uma pergunta natural é se todo ideal à esquerda ou à direita de\' D IND. n\'(K) pode ser gerado por dois elementos. Neste trabalho provaremos que todo ideal à esquerda ou à direita do anel \'E IND. n\'(K) := K((\'x IND. 1\' ... \'x IND. n\'))(\' partial IND. 1, ...\'partial IND. n\') de operadores diferenciais sobre o corpo das séries de Laurent K((\'x IND. 1\', ...\'x IND. n\')) é gerado por dois elementos. Nós provaremos também que todo ideal à esquerda ou à direita do anel \'S IND. n -1\'(K) := K((\'x IND. 1\', ...\'X ind. n - 1\"))[[\'x IND. n\']](\' partial IND. 1, ...\'partial IND. n\') é gerado por dois elementos e como corolário obtemos uma demonstração que todo ideal à esquerda ou à direita do anel \'D IND. 1\'(K) é gerado por dois elementos. Isto está de acordo com a conjectura que diz que todo ideal à esquerda ou à direita de um anel (não comutativo) Noetheriano simples é gerado por dois elementos / In [12] J.T. Stafford proved that every left or right ideal of the Weyl algebra \'A IND. n\'(K) = K[\'x IND. 1\', ...\'x IND. n\'](\' partial IND. 1, ...\'partial IND. n\')(K a field of characteristic zero) is generated by two elements. Consider the ring \'D IND. n\' := K[[\'x IND. 1\', ...\'x IND.n\']](\'partial IND. 1\", ...\'partial IND. n) of differential operators over the ring of formal power series K[[\'x IND. 1\', ... \'x IND. n\']]: A natural question is that if every left or right ideal of \'D IND. n\'(K) can be generated by two elements. In this work we will prove that every left or right ideal of the ring \'E IND. n\' (K) := K((\'x IND. 1\', ... \'x IND. n\'))(\'partial IND. 1,...\'partial IND. n\') of differential operators over the field of formal Laurent series K((\'x IND. 1\', ...\'x IND. n\'))) is generated by two elements. We will prove also that every left or right ideal of the ring \'S IND. n -1\"(K) := K((\'x IND. 1\', ...\'x IND. n\'-1\'))[[\'x IND. n]](\'paertial IND. 1, ...\'partial IND. n\') is generated by two elements and as a corollary we obtain a proof of that every left or right ideal of the ring \'D IND. 1\'(K) is generated by two elements. This is in accordance with the conjecture that says that in a (noncommutative) Noetherian simple ring, every left or right ideal is generated by two elements
56

Bandlimited functions, curved manifolds, and self-adjoint extensions of symmetric operators

Martin, Robert January 2008 (has links)
Sampling theory is an active field of research that spans a variety of disciplines from communication engineering to pure mathematics. Sampling theory provides the crucial connection between continuous and discrete representations of information that enables one store continuous signals as discrete, digital data with minimal error. It is this connection that allows communication engineers to realize many of our modern digital technologies including cell phones and compact disc players. This thesis focuses on certain non-Fourier generalizations of sampling theory and their applications. In particular, non-Fourier analogues of bandlimited functions and extensions of sampling theory to functions on curved manifolds are studied. New results in bandlimited function theory, sampling theory on curved manifolds, and the theory of self-adjoint extensions of symmetric operators are presented. Besides being of mathematical interest in itself, the research contained in this thesis has applications to quantum physics on curved space and could potentially lead to more efficient information storage methods in communication engineering.
57

Bandlimited functions, curved manifolds, and self-adjoint extensions of symmetric operators

Martin, Robert January 2008 (has links)
Sampling theory is an active field of research that spans a variety of disciplines from communication engineering to pure mathematics. Sampling theory provides the crucial connection between continuous and discrete representations of information that enables one store continuous signals as discrete, digital data with minimal error. It is this connection that allows communication engineers to realize many of our modern digital technologies including cell phones and compact disc players. This thesis focuses on certain non-Fourier generalizations of sampling theory and their applications. In particular, non-Fourier analogues of bandlimited functions and extensions of sampling theory to functions on curved manifolds are studied. New results in bandlimited function theory, sampling theory on curved manifolds, and the theory of self-adjoint extensions of symmetric operators are presented. Besides being of mathematical interest in itself, the research contained in this thesis has applications to quantum physics on curved space and could potentially lead to more efficient information storage methods in communication engineering.
58

Joint Eigenfunctions On The Heisenberg Group And Support Theorems On Rn

Samanta, Amit 05 1900 (has links) (PDF)
This work is concerned with two different problems in harmonic analysis, one on the Heisenberg group and other on Rn, as described in the following two paragraphs respectively. Let Hn be the (2n + 1)-dimensional Heisenberg group, and let K be a compact subgroup of U(n), such that (K, Hn) is a Gelfand pair. Also assume that the K-action on Cn is polar. We prove a Hecke-Bochner identity associated to the Gelfand pair (K, Hn). For the special case K = U(n), this was proved by Geller, giving a formula for the Weyl transform of a function f of the type f = Pg, where g is a radial function, and P a bigraded solid U(n)-harmonic polynomial. Using our general Hecke-Bochner identity we also characterize (under some conditions) joint eigenfunctions of all differential operators on Hn that are invariant under the action of K and the left action of Hn . We consider convolution equations of the type f * T = g, where f, g ε Lp(Rn) and T is a compactly supported distribution. Under natural assumptions on the zero set of the Fourier transform of T , we show that f is compactly supported, provided g is.
59

Problema de Noether não-comutativo / Noncommutative Noether´s problem

Schwarz, Joao Fernando 12 February 2015 (has links)
Neste trabalho, temos o objetivo de introduzir o Problema de Noether Clássico e sua versão não- comutativa introduzida por J. Alev e F. Dumas em [AD06]. Discutiremos os principais casos co- nhecidos nos quais os problemas têm solução positiva, observando um forte paralelo entre os casos comutativo e não-comutativo. Cobriremos os tópicos preliminares necessários para entendimento dos enunciados: álgebras de Weyl, anéis de operadores diferenciais, extensões de Ore, localização em domínios não-comutativos, e corpos de Weyl. No Capítulo 5 deste trabalho, o aluno apresenta duas contribuições originais, obtidas em colaboração com seu orientador V. Futorny e F. Eshmatov: o Teorema 5.5, que é um resultado folclórico sobre invariantes de ações livres de grupos finitos no anel de operadores diferenciais de variedades afins; e o Teorema 5.6, que até onde sabemos é iné- dito, sobre invariantes dos Corpos de Weyl sob a ação de grupos de pseudo-reflexão. Todo material algébrico preliminar para a demonstração destes dois teoremas é incluído no texto da dissertação: um básico de teoria de invariantes, vários resultados da teoria de grupos de pseudo-reflexão, alguns conceitos básicos de geometria algébrica e álgebra comutativa, e uma discussão detalhada do quo- ciente de variedades afins sob ação de grupos finitos. / In this work we aim to introduce the Classical Noether´s Problem, and its noncommutative version introduced by J. Alev and F. Dumas in [AD06]. We discuss the most well known cases of positive solution of these problems, pointing out a strong similarity between the cases of positive solution for the classical and noncommutative versions of the Problem. We cover the preliminary topics to understand the statement and solutions of these problems: Weyl algebras, differential operators rings, Ore extensions, noncommutative localization, and Weyl Skew-Fields. In the Chapter 5 of this dissertation, the student shows two original contributions, obtained in collaboration with his advisor V. Futorny and F. Eshmatov: Theorem 5.5, a result belonging to the folklore of the area of differential operators, describing its invariants under the free action of a finite group on an affine variety; and Theorem 5.6, about the invariants of the Weyl skew-fields under the action of pseudo-reflection groups. As far as we know, this result is new. All preliminary algebraic facts to prove these two facts are included in the body of this text. It includes some basic facts on invariant theory, many results about pseudo-reflection groups, some basic concepts of algebraic geometry and commutative algebra, and a detailed discussion of the quotient of an affine variety under the action of a finite group.
60

Invariantes de anéis de operadores diferenciais: racionalidade de Gellfand-Kirillov, categorias de módulos, aplicações / Invariants of rings of differential operators: Gelfand-Kirillov rationality, categories of modules, aplications

Schwarz, João Fernando 13 November 2018 (has links)
Esta tese aborda, como a despeito da rigidez da álgebra de Weyl An(k), suas subálgebras de invariantes possuem uma rica teoria de invariantes: do ponto de vista de estrutura, se fizermos um estudo de equivalência birracional dentro da filosofia de Gelfand-Kirillov, temos o Problema de Noether Não-Comutativo, sobre o qual obtemos vários novos resultados (Capítulo 4). Do ponto de vista de representações, obtemos que suas subálgebras de invariantes, em vários casos, herdam de maneira natural a estrutura de módulos de Gelfand-Tsetlin da álgebra de Weyl (Capítulo 5), assim como uma noção natural de módulos holonômicos (Capítulo 6). Analisaremos resultados similares para outras álgebras semelhantes a Álgebra de Weyl, como anéis de operadores diferenciais no toro e álgebras de Weyl generalizadas (Capítulos 2, 4 e 5). Como aplicações, temos uma Conjectura de Gelfand-Kirillov para subálgebras esféricas de Cherednik (Capítulo 4); para a Conjectura de Gelfand-Kirillov para várias álgebras de Galois (Capítulos 5 e 7); e o problema de realizar U(L), em que L é uma algebra de Lie simples de tipo B,C,D, como uma ordem de Galois generalizando o caso de gln (Capítulo 5). Um Capítulo sobre o Problema de Noether Quântico e um resumo do artigo de Futorny e Schwarz, \"Quantum Linear Galois Algebras\", encerram a tese. / This thesis discussess how, given the rigidity results on the Weyl Algebra An(k), its invariant subrings can nonetheless have an interesting invariant theory: from the structural point of view, a birrational equivalence study under the Gelfand-Kirillov philosophy gives us the Noncommutative Noether Problem, of which we obtain many new results (Chapter 4). From the point of view of representations, we obtain that their invariant rings, in many cases, have a natural theory of Gelfand-Tsetlin modules just like the Weyl Algebra (Chapter 5), and a natural notion of holonomic modules (Chapter 6). We discuss analogues results for algebras which are similar to the Weyl Algebra, such as the ring of differential operators on the torus and the generalized Weyl algebras (Chapters 2,4,5). As applications, we have a Gelfand-Kirillov Conjecture for spherical subalgebras of Cherednik (Chapter 4); for the Gelfand-Kirillov Conjecture of many Galois algebras (Chapter 5 and 7); and the problem to give a Galois structure to the algebra U(L), where L is a simple Lie algebra of type B,C,D -generalizing the case A (Chapter 5). A chapter about the Quantum Noether Problem and a resume of the article Quantum Linear Galois Algebras\" ends the thesis.

Page generated in 0.1141 seconds