Spelling suggestions: "subject:"differentialalgebraic aquation"" "subject:"differentialalgebraic cquation""
11 |
Real-time Dynamic Simulation of Constrained Multibody Systems using Symbolic ComputationUchida, Thomas Kenji January 2011 (has links)
The main objective of this research is the development of a framework for the automatic generation of systems of kinematic and dynamic equations that are suitable for real-time applications. In particular, the efficient simulation of constrained multibody systems is addressed. When modelled with ideal joints, many mechanical systems of practical interest contain closed kinematic chains, or kinematic loops, and are most conveniently modelled using a set of generalized coordinates of cardinality exceeding the degrees-of-freedom of the system. Dependent generalized coordinates add nonlinear algebraic constraint equations to the ordinary differential equations of motion, thereby producing a set of differential-algebraic equations that may be difficult to solve in an efficient yet precise manner. Several methods have been proposed for simulating such systems in real time, including index reduction, model simplification, and constraint stabilization techniques.
In this work, the equations of motion are formulated symbolically using linear graph theory. The embedding technique is applied to eliminate the Lagrange multipliers from the dynamic equations and obtain one ordinary differential equation for each independent acceleration. The theory of Gröbner bases is then used to triangularize the kinematic constraint equations, thereby producing recursively solvable systems for calculating the dependent generalized coordinates given values of the independent coordinates. For systems that can be fully triangularized, the kinematic constraints are always satisfied exactly and in a fixed amount of time. Where full triangularization is not possible, a block-triangular form can be obtained that still results in more efficient simulations than existing iterative and constraint stabilization techniques.
The proposed approach is applied to the kinematic and dynamic simulation of several mechanical systems, including six-bar mechanisms, parallel robots, and two vehicle suspensions: a five-link and a double-wishbone. The efficient kinematic solution generated for the latter is used in the real-time simulation of a vehicle with double-wishbone suspensions on both axles, which is implemented in a hardware- and operator-in-the-loop driving simulator. The Gröbner basis approach is particularly suitable for situations requiring very efficient simulations of multibody systems whose parameters are constant, such as the plant models in model-predictive control strategies and the vehicle models in driving simulators.
|
12 |
Real-time Dynamic Simulation of Constrained Multibody Systems using Symbolic ComputationUchida, Thomas Kenji January 2011 (has links)
The main objective of this research is the development of a framework for the automatic generation of systems of kinematic and dynamic equations that are suitable for real-time applications. In particular, the efficient simulation of constrained multibody systems is addressed. When modelled with ideal joints, many mechanical systems of practical interest contain closed kinematic chains, or kinematic loops, and are most conveniently modelled using a set of generalized coordinates of cardinality exceeding the degrees-of-freedom of the system. Dependent generalized coordinates add nonlinear algebraic constraint equations to the ordinary differential equations of motion, thereby producing a set of differential-algebraic equations that may be difficult to solve in an efficient yet precise manner. Several methods have been proposed for simulating such systems in real time, including index reduction, model simplification, and constraint stabilization techniques.
In this work, the equations of motion are formulated symbolically using linear graph theory. The embedding technique is applied to eliminate the Lagrange multipliers from the dynamic equations and obtain one ordinary differential equation for each independent acceleration. The theory of Gröbner bases is then used to triangularize the kinematic constraint equations, thereby producing recursively solvable systems for calculating the dependent generalized coordinates given values of the independent coordinates. For systems that can be fully triangularized, the kinematic constraints are always satisfied exactly and in a fixed amount of time. Where full triangularization is not possible, a block-triangular form can be obtained that still results in more efficient simulations than existing iterative and constraint stabilization techniques.
The proposed approach is applied to the kinematic and dynamic simulation of several mechanical systems, including six-bar mechanisms, parallel robots, and two vehicle suspensions: a five-link and a double-wishbone. The efficient kinematic solution generated for the latter is used in the real-time simulation of a vehicle with double-wishbone suspensions on both axles, which is implemented in a hardware- and operator-in-the-loop driving simulator. The Gröbner basis approach is particularly suitable for situations requiring very efficient simulations of multibody systems whose parameters are constant, such as the plant models in model-predictive control strategies and the vehicle models in driving simulators.
|
13 |
Analysis and waveform relaxation for a differential-algebraic electrical circuit modelPade, Jonas 22 July 2021 (has links)
Die Hauptthemen dieser Arbeit sind einerseits eine tiefgehende Analyse von nichtlinearen differential-algebraischen Gleichungen (DAEs) vom Index 2, die aus der modifizierten Knotenanalyse (MNA) von elektrischen Schaltkreisen hervorgehen, und andererseits die Entwicklung von Konvergenzkriterien für Waveform Relaxationsmethoden zum Lösen gekoppelter Probleme. Ein Schwerpunkt in beiden genannten Themen ist die Beziehung zwischen der Topologie eines Schaltkreises und mathematischen Eigenschaften der zugehörigen DAE.
Der Analyse-Teil umfasst eine detaillierte Beschreibung einer Normalform für Schaltkreis DAEs vom Index 2 und Abschätzungen, die für die Sensitivität des Schaltkreises bezüglich seiner Input-Quellen folgen. Es wird gezeigt, wie diese Abschätzungen wesentlich von der topologischen Position der Input-Quellen im Schaltkreis abhängen.
Die zunehmend komplexen Schaltkreise in technologischen Geräten erfordern oftmals eine Modellierung als gekoppeltes System. Waveform relaxation (WR) empfiehlt sich zur Lösung solch gekoppelter Probleme, da sie auf die Subprobleme angepasste Lösungsmethoden und Schrittweiten ermöglicht. Es ist bekannt, dass WR zwar bei Anwendung auf gewöhnliche Differentialgleichungen konvergiert, falls diese eine Lipschitz-Bedingung erfüllen, selbiges jedoch bei DAEs nicht ohne Hinzunahme eines Kontraktivitätskriteriums sichergestellt werden kann. Wir beschreiben allgemeine Konvergenzkriterien für WR auf DAEs vom Index 2. Für den Fall von Schaltkreisen, die entweder mit anderen Schaltkreisen oder mit elektromagnetischen Feldern verkoppelt sind, leiten wir außerdem hinreichende topologische Konvergenzkriterien her, die anhand von Beispielen veranschaulicht werden. Weiterhin werden die Konvergenzraten des Jacobi WR Verfahrens und des Gauss-Seidel WR Verfahrens verglichen. Simulationen von einfachen Beispielsystemen zeigen drastische Unterschiede des WR-Konvergenzverhaltens, abhängig davon, ob die Konvergenzbedingungen erfüllt sind oder nicht. / The main topics of this thesis are firstly a thorough analysis of nonlinear differential-algebraic equations (DAEs) of index 2 which arise from the modified nodal analysis (MNA) for electrical circuits and secondly the derivation of convergence criteria for waveform relaxation (WR) methods on coupled problems. In both topics, a particular focus is put on the relations between a circuit's topology and the mathematical properties of the corresponding DAE.
The analysis encompasses a detailed description of a normal form for circuit DAEs of index 2
and consequences for the sensitivity of the circuit with respect to its input source terms.
More precisely, we provide bounds which describe how strongly changes in the input sources of the circuit affect its behaviour. Crucial constants in these bounds are determined in terms of the topological position of the input sources in the circuit.
The increasingly complex electrical circuits in technological devices often call for coupled systems modelling. Allowing for each subsystem to be solved by dedicated numerical solvers and time scales, WR is an adequate method in this setting. It is well-known that while WR converges on ordinary differential equations if a Lipschitz condition is satisfied, an additional convergence criterion is required to guarantee convergence on DAEs. We present general convergence criteria for WR on higher index DAEs. Furthermore, based on our results of the analysis part, we derive topological convergence criteria for coupled circuit/circuit problems and field/circuit problems. Examples illustrate how to practically check if the criteria are satisfied. If a sufficient convergence criterion holds, we specify at which rate of convergence the Jacobi and Gauss-Seidel WR methods converge. Simulations of simple benchmark systems illustrate the drastically different convergence behaviour of WR depending on whether or not the circuit topological convergence conditions are satisfied.
|
Page generated in 0.1121 seconds