Spelling suggestions: "subject:"modifizierten knotenanalyse"" "subject:"modifizierten datenanalyse""
1 |
Consistent initialization for index-2 differential algebraic equations and its application to circuit simulationSchwarz, Diana Estévez 13 July 2000 (has links)
Zur numerischen L\"osung von Algebro-Differentialgleichungen (ADGln) m\"ussen konsistente Anfangswerte berechnet werden. Diese Arbeit befasst sich mit einem Ansatz zur Behandlung dieses Problems f\"ur Index-2 DAEs unter Verwendung von Projektoren auf die zur DAE zugeh\"origen Unterr\"aume. Die Arbeit hat zwei Schwerpunkte.\\ Zum einen werden neue Struktureigenschaften aus schwachen Voraussetzungen hergeleitet. Anschlie{\ss}end wird eine Vorgehensweise zur Auswahl von geeigneten Gleichungen einer Index-2 ADGln vorgeschlagen, deren Differentiation zu einer Indexreduktion f\"uhrt. Diese Indexreduktion liefert neue Existenz- und Eindeutigkeitsergebnisse f\"ur L\"osungen von Index-2 ADGln. Die Ergebnisse umfassen eine allgemeinere Aufgabenklasse als die bisherigen Resultate. Beruhend auf dieser Vorgehensweise wird ein stufenweiser Ansatz zur Berechnung konsistenter Anfangswerte hergeleitet. Auf diese Weise werden neue Einsichten hinsichtlich der Ausnutzung von Struktureigenschaften von Index-2 ADGln gewonnen. Insbesondere stellt sich heraus, dass im Vergleich zu Index-1 ADGln der zus\"atzliche Schritt oft in der L\"osung eines linearen Systems besteht. Die sich hieraus ergebenden numerischen Folgen werden f\"ur zwei in der Schaltungssimulation h\"aufig verwendete Verfahren, das implizite Eulerverfahren und die Trapezregel, erl\"autert. \\ Zum anderen wird die Anwendung der erhaltenen Ergebnisse auf die Gleichungen, die bei der Schaltungssimulation mittels modifizierter Knotenanalyse entstehen, ausgearbeitet. Abschlie{\ss}end wird eine kurze \"Ubersicht der durchgef\"uhrten Umsetzung gegeben.\\ / For solving DAEs numerically, consistent initial values have to be calculated. This thesis deals with an approach for handling this problem for index-2 DAEs by considering projectors onto the spaces related to the DAE. There are two major aspects in this work.\\ On the one hand, new structural properties are deduced from weak assumptions. Subsequently, a method is proposed to choose suitable equations of an index-2 DAE, whose differentiation leads to an index reduction. This index reduction yields new theoretical results for the existence and uniqueness of solutions of index-2 DAEs which apply to a wider class of applications than previous results. Based on this method, a step-by-step approach to compute consistent initial values is developed. In this way, we gain new insights about how to deal with structural properties of index-2 DAEs. In particular, it turns out that, in comparison to index-1 DAEs, the additional step that has to be undertaken in practice often consists in solving a linear system. The numerical consequences of this fact are exemplified for two methods commonly used in circuit simulation, the implicit Euler method and the trapezoidal rule.\\ On the other hand, the application of the obtained results to the equations arising in circuit simulation by means of the modified nodal analysis (MNA) is worked out. Finally, a short overview of the specifics of their realization is given.
|
2 |
Circuit Simulation Including Full-Wave Maxwell's Equations / Modeling Aspects and Numerical AnalysisStrohm, Christian 15 March 2021 (has links)
Diese Arbeit widmet sich der Simulation von elektrischen/elektronischen Schaltungen welche um elektromagnetische Bauelemente erweitert werden. Im Fokus stehen unterschiedliche Kopplungen der Schaltungsgleichungen, modelliert mit der modifizierten Knotenanalyse, und den elektromagnetischen Bauelementen mit deren verfeinerten Modell basierend auf den vollen Maxwell-Gleichungen in der Lorenz-geeichten A-V Formulierung welche durch Finite-Integrations-Technik räumlich diskretisiert werden. Eine numerische Analyse erweitert die topologischen Kriterien für den Index der resultierenden differential-algebraischen Gleichungen, wie sie bereits in anderen Arbeiten mit ähnlichen Feld/Schaltkreis-Kopplungen hergeleitet wurden. Für die Simulation werden sowohl ein monolithischer Ansatz als auch Waveform-Relaxationsmethoden untersucht. Im Mittelpunkt stehen dabei Zeitintegration, Skalierungsmethoden, strukturelle Eigenschaften und ein hybride Ansatz zur Lösung der zugrundeliegenden linearen Gleichungssysteme welcher den Einsatz spezialisierter Löser für die jeweiligen Teilsysteme erlaubt. Da die vollen Maxwell-Gleichungen zusätzliche Ableitungen in der Kopplungsstruktur verursachen, sind bisher existierende Konvergenzaussagen für die Waveform-Relaxation von gekoppelten differential-algebraischen Gleichungen nicht anwendbar und motivieren eine neue Konvergenzanalyse. Auf dieser Analyse aufbauend werden hinreichende topologische Kriterien entwickelt, welche eine Konvergenz von Gauß-Seidel- und Jacobi-artigen Waveform-Relaxationen für die gekoppelten Systeme garantieren. Schließlich werden numerische Benchmarks zur Verfügung gestellt, um die eingeführten Methoden und Theoreme dieser Abhandlung zu unterstützen. / This work is devoted to the simulation of electrical/electronic circuits incorporating electromagnetic devices. The focus is on different couplings of the circuit equations, modeled with the modified nodal analysis, and the electromagnetic devices with their refined model based on full-wave Maxwell's equations in Lorenz gauged A-V formulation which are spatially discretized by the finite integration technique. A numerical analysis extends the topological criteria for the index of the resulting differential-algebraic equations, as already derived in other works with similar field/circuit couplings. For the simulation, both a monolithic approach and waveform relaxation methods are investigated. The focus is on time integration, scaling methods, structural properties and a hybrid approach to solve the underlying linear systems of equations with the use of specialized solvers for the respective subsystems. Since the full-Maxwell approach causes additional derivatives in the coupling structure, previously existing convergence statements for the waveform relaxation of coupled differential-algebraic equations are not applicable and motivate a new convergence analysis. Based on this analysis, sufficient topological criteria are developed which guarantee convergence of Gauss-Seidel and Jacobi type waveform relaxation schemes for introduced coupled systems. Finally, numerical benchmarks are provided to support the introduced methods and theorems of this treatise.
|
3 |
Analysis and waveform relaxation for a differential-algebraic electrical circuit modelPade, Jonas 22 July 2021 (has links)
Die Hauptthemen dieser Arbeit sind einerseits eine tiefgehende Analyse von nichtlinearen differential-algebraischen Gleichungen (DAEs) vom Index 2, die aus der modifizierten Knotenanalyse (MNA) von elektrischen Schaltkreisen hervorgehen, und andererseits die Entwicklung von Konvergenzkriterien für Waveform Relaxationsmethoden zum Lösen gekoppelter Probleme. Ein Schwerpunkt in beiden genannten Themen ist die Beziehung zwischen der Topologie eines Schaltkreises und mathematischen Eigenschaften der zugehörigen DAE.
Der Analyse-Teil umfasst eine detaillierte Beschreibung einer Normalform für Schaltkreis DAEs vom Index 2 und Abschätzungen, die für die Sensitivität des Schaltkreises bezüglich seiner Input-Quellen folgen. Es wird gezeigt, wie diese Abschätzungen wesentlich von der topologischen Position der Input-Quellen im Schaltkreis abhängen.
Die zunehmend komplexen Schaltkreise in technologischen Geräten erfordern oftmals eine Modellierung als gekoppeltes System. Waveform relaxation (WR) empfiehlt sich zur Lösung solch gekoppelter Probleme, da sie auf die Subprobleme angepasste Lösungsmethoden und Schrittweiten ermöglicht. Es ist bekannt, dass WR zwar bei Anwendung auf gewöhnliche Differentialgleichungen konvergiert, falls diese eine Lipschitz-Bedingung erfüllen, selbiges jedoch bei DAEs nicht ohne Hinzunahme eines Kontraktivitätskriteriums sichergestellt werden kann. Wir beschreiben allgemeine Konvergenzkriterien für WR auf DAEs vom Index 2. Für den Fall von Schaltkreisen, die entweder mit anderen Schaltkreisen oder mit elektromagnetischen Feldern verkoppelt sind, leiten wir außerdem hinreichende topologische Konvergenzkriterien her, die anhand von Beispielen veranschaulicht werden. Weiterhin werden die Konvergenzraten des Jacobi WR Verfahrens und des Gauss-Seidel WR Verfahrens verglichen. Simulationen von einfachen Beispielsystemen zeigen drastische Unterschiede des WR-Konvergenzverhaltens, abhängig davon, ob die Konvergenzbedingungen erfüllt sind oder nicht. / The main topics of this thesis are firstly a thorough analysis of nonlinear differential-algebraic equations (DAEs) of index 2 which arise from the modified nodal analysis (MNA) for electrical circuits and secondly the derivation of convergence criteria for waveform relaxation (WR) methods on coupled problems. In both topics, a particular focus is put on the relations between a circuit's topology and the mathematical properties of the corresponding DAE.
The analysis encompasses a detailed description of a normal form for circuit DAEs of index 2
and consequences for the sensitivity of the circuit with respect to its input source terms.
More precisely, we provide bounds which describe how strongly changes in the input sources of the circuit affect its behaviour. Crucial constants in these bounds are determined in terms of the topological position of the input sources in the circuit.
The increasingly complex electrical circuits in technological devices often call for coupled systems modelling. Allowing for each subsystem to be solved by dedicated numerical solvers and time scales, WR is an adequate method in this setting. It is well-known that while WR converges on ordinary differential equations if a Lipschitz condition is satisfied, an additional convergence criterion is required to guarantee convergence on DAEs. We present general convergence criteria for WR on higher index DAEs. Furthermore, based on our results of the analysis part, we derive topological convergence criteria for coupled circuit/circuit problems and field/circuit problems. Examples illustrate how to practically check if the criteria are satisfied. If a sufficient convergence criterion holds, we specify at which rate of convergence the Jacobi and Gauss-Seidel WR methods converge. Simulations of simple benchmark systems illustrate the drastically different convergence behaviour of WR depending on whether or not the circuit topological convergence conditions are satisfied.
|
Page generated in 0.0972 seconds