• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • Tagged with
  • 12
  • 12
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optical Confinement in the Nanocoax:

Calm, Yitzi M. January 2019 (has links)
Thesis advisor: Michael J. Naughton / The nanoscale coaxial cable (nanocoax) has demonstrated sub-diffraction-limited optical confinement in the visible and the near infrared, with the theoretical potential for confinement to scales arbitrarily smaller than the free space wavelength. In the first part of this thesis, I define in clear terms what the diffraction limit is. The conventional resolution formulae used by many are generally only valid in the paraxial limit. I performed a parametric numerical study, employing techniques of Fourier optics, to resolve precisely what that limit should be for nonparaxial (i.e. wide angle) focusing of scalar spherical waves. I also present some novel analytical formulae born out of Debye’s approximation which explain the trends found in the numeric study. These new functional forms remain accurate under wide angle focusing and could materially improve the performance, for example, in high intensity focused ultrasound surgery by further concentrating the power distributed within the point spread function to suppress the side lobes. I also comment of some possible connections to the focusing of electromagnetic waves. In the second part of this thesis I report on a novel fabrication process which yields optically addressable, sub-micron scale, and high aspect ratio metal-insulator-metal nanocoaxes made by atomic layer deposition of Pt and Al2O3. I discuss the observation of optical transmission via the fundamental, TEM-like mode by excitation with a radially polarized optical vortex beam. Also, Laguerre-Gauss beams are shown to overlap well with cylindrical waveguide modes in the nanocoax. My experimental results are based on interrogation with a polarimetric imager and a near-field scanning optical microscope. Various optical apparatus I built during my studies are also reviewed. Numerical simulations were used with uniaxial symmetry to explore 3D adiabatic taper geometries much larger than the wavelength. Finally, I draw some conclusions by assessing the optical performance of the fabricated nanocoaxial structures, and by giving some insights into future directions of investigation. / Thesis (PhD) — Boston College, 2019. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Physics.
2

Terahertz Near-field Investigation of a Plasmonic GaAs Superlens

Fehrenbacher, Markus 26 April 2016 (has links) (PDF)
This work presents the first demonstration of a semiconductor based plasmonic near-field superlens, utilizing highly doped GaAs to generate infrared optical images with a spatial resolution beyond the difraction limit. Being easily transferable to other semiconductor materials, the concept described in this thesis can be exploited to realize spectrally adjustable superlenses in a wide spectral range. The idea of superlensing has been introduced theoretically in 2000, followed by numerous publications including experimental studies. The effect initiated great interest in optics, since in contrast to difraction limited conventional optical microscopy it enables subwavelength resolved imaging by reconstructing the evanescent waves emerging from an object. With techniques like scanning near-field optical microscopy (SNOM) and stimulated emission depletion (STED) being already successfully established to overcome the conventional restrictions, the concept of superlensing provides a novel, different route towards high resolution. Superlensing is a resonant phenomenon, relying either on the excitation of surface plasmons in metallic systems or on phonon resonances in dielectric structures. In this respect a superlens based on doped semiconductor benefits from the potential to be controlled in its operational wavelength by shifting the plasma frequency through adjustment of the free carrier concentration. For a proof of principle demonstration, we investigate a superlens consisting of a highly n-doped GaAs layer (n = 4 x 10^18 cm-3) sandwiched between two intrinsic layers. Recording near-field images of subwavelength sized gold stripes through the trilayer structure by means of SNOM in combination with a free-electron laser, we observe both enhanced signal and improved spatial resolution at radiation wavelengths close to l = 22 µm, which is in excellent agreement with simulations based on the Drude-Lorentz model of free electrons. Here, comparative investigations of a purely intrinsic reference sample confirm that the effect is mediated by the charge carriers within the doped layer. Furthermore, slightly differently doped samples provide indications for the expected spectral shift of the resonance. According to our calculations, the wavelength range to be exploited by n-GaAs based superlenses reaches far into the terahertz region, whereas other semiconductor materials are required to explore the near infrared.
3

Super-resolution optical imaging using microsphere nanoscopy

Lee, Seoungjun January 2013 (has links)
Standard optical microscopes cannot resolve images below 200 nm within the visible wavelengths due to optical diffraction limit. This Thesis reports an investigation into super-resolution imaging beyond the optical diffraction limit by microsphere optical nano-scopy (MONS) and submerged microsphere optical nano-scopy (SMON). The effect of microsphere size, material and the liquid type as well as light illumination conditions and focal plane positions on imaging resolution and magnification have been studied for imaging both biological (viruses and cells) and non-biological (Blu-ray disk patterns and nano-pores of anodised aluminium oxide) samples. In particular, sub-surface imaging of nano-structures (data-recorded Blu-ray) that cannot even be seen by a scanning electron microscope (SEM) has been demonstrated using the SMON technique. Adenoviruses of 75 nm in size have been observed with white light optical microscopy for the first time. High refractive index microsphere materials such as BaTiO3 (refractive index n = 1.9) and TiO2-BaO-ZnO (refractive index n = 2.2) were investigated for the first time for the imaging. The super-resolution imaging of sub-diffraction-limited objects is strongly influenced by the relationship between the far-field propagating wave and the near-field evanescent waves. The diffraction limit free evanescent waves are the key to achieving super-resolution imaging. This work shows that the MONS and SMON techniques can generate super-resolution through converting evanescent waves into propagating wave. The optical interactions with the microspheres were simulated using special software (DSIMie) and finite different in time domain numerical analysis software (CST Microwave Studio). The optical field structures are observed in the near-field of a microsphere. The photonic nanojets waist and the distance between single dielectric microsphere and maximum intensity position were calculated. The theoretical modelling was calculated for comparisons with experimental measurements in order to develop and discover super-resolution potential.
4

Construction d'une nouvelle expérience pour l'étude de gaz quantiques dégénérés des réseaux optiques, et étude d'un système d'imagerie super-résolution / Construction of a new experiment for studying degenerated quantum gases in optical lattices, and study a of a super resolution imaging system.

Vasquez Bullon, Hugo Salvador 29 February 2016 (has links)
Depuis quelques temps, les physiciens théoriciens de la matière condensée sont confrontés à un problème majeur : la puissance de calcul nécessaire pour simuler numériquement et étudier certains systèmes à N corps est insuffisante. Comme le contrôle et l’utilisation des systèmes d’atomes ultra-froids se sont développés de manière importante,principalement durant les deux dernières décennies, nous sommes peut-être en mesure d eproposer une solution alternative : utiliser des atomes ultra-froids piégés dans des réseaux optiques en tant que simulateur quantique. En effet, la physique des électrons se déplaçant sur la structure cristalline d’un solide, ainsi que celle des atomes piégés dans des réseaux optiques, sont toutes les deux décrites par le même modèle de Fermi-Hubbard, qui est une présentation simplifiée du comportement des fermions sur un réseau périodique. Les simulateurs quantiques peuvent donc simuler des propriétés électriques des matériaux, telle sque la conductivité ou le comportement isolant, et potentiellement aussi des propriété smagnétiques telles que l’ordre antiferromagnétique.L’expérience AUFRONS, sur laquelle j’ai travaillé pendant mon doctorat, a pour but d’étudie rla physique des fermions fortement corrélés, avec un simulateur quantique basé sur l’utilisation d’atomes ultra-froids de rubidium 87 et de potassium 40, piégés dans le potentiel nanostructuré des réseaux optiques bidimensionnels, générés en champ proche. Pour détecter la distribution atomique à d’aussi courtes distances, nous avons développé une technique d’imagerie novatrice, qui nous permettra de contourner la limite de diffraction. Une fois terminé, notre système d’imagerie pourrait potentiellement détecter et identifier des sites individuels du réseau optique sub-longueur d’onde.Dans ce manuscrit, je décris le travail que j’ai effectué pour construire l’expérience AUFRONS,ainsi que l’étude de faisabilité que j’ai réalisée pour la technique d’imagerie à super-résolution. / For some time now, theoretical physicists in condensed matter face a majorproblem: the computing power needed to numerically simulate and study some interactingmany-body systems is insufficient. As the control and use of ultracold atomic systems hasexperimented a significant development in recent years, an alternative to this problem is to usecold atoms trapped in optical lattices as a quantum simulator. Indeed, the physics of electronsmoving on a crystalline structure of a solid, and the one of trapped atoms in optical lattices areboth described by the same model, the Fermi-Hubbard model, which is a simplifiedrepresentation of fermions moving on a periodic lattice. The quantum simulators can thusreproduce the electrical properties of materials such as conductivity or insulating behavior, andpotentially also the magnetic ones such as antiferromagnetism.The AUFRONS experiment, in which I worked during my PhD, aims at building a quantumsimulator based on cooled atoms of 87Rb and 40K trapped in near field nanostructured opticalpotentials. In order to detect the atom distribution at such small distances, we have developedan innovative imaging technique for getting around the diffraction limit. This imaging systemcould potentially allow us to detect single-site trapped atoms in a sub-wavelength lattice.In this thesis, I introduce the work I have done for building the AUFRONS experiment, as wellas the feasability study that I did for the super-resolution imaging technique.
5

Ground State Depletion Fluorescence Microscopy / Hochauflösende Fluoreszenzmikrospie durch Entvölkerung des Grundzustandes

Bretschneider, Stefan 21 December 2007 (has links)
No description available.
6

Técnicas de desempenho óptico e avaliação da qualidade de imagem em sistemas ópticos por medição de função de transferência / Optical techiques and image quality evaluation in optical systems by optical transfer function measuremente

Yasuoka, Fatima Maria Mitsue 08 May 1997 (has links)
O propósito deste trabalho tem sido a utilização das técnicas de Desenho Óptico para o desenvolvimento de sistemas ópticos altamente otimizados. Após a confeccção destes sistemas ópticos torna-se necessário avaliar o desempenho do sistema construído, para isto tem sido utilizado uma das técnicas mais modernas para avaliação de qualidade da imagem óptica, a função de transferência óptica FTO, mais especificamente a função de transferência de modulação FTM. FTM representa o módulo da função complexa FTO e está associada à medida direta e quantitativa da qualidade de imagem, descrevendo a estrutura da imagem como uma função da freqüência espacial. Estas duas técnicas são as ferramentas fundamentais para os desenhistas ópticos. Instrumentos oftálmicos como o microscópio cirúrgico, sistema óptico para adaptação de uma câmera CCD e a lâmpada de fenda são desenvolvidos e analisados por estas técnicas neste trabalho. / The purpose of this work has been the use of design optical techniques to development of highly optimized optical systems. After the fabrication of these systems, it is necessary to evaluate the performance of building systems. A modern technique used to evaluate the quality of optical image is the optical transfer function OTF, more exactly the modulation transfer function MTF. MTF is the modulus of the complex function OTF. MTF is associated the direct and quantitative measure of the image quality and it describes the image structure as a function of spatial frequency. This bides techniques are the tools of optical designers. Ophthalmic instruments like surgery microscope, optical system of CCD camera adaptation and slit lamps are developed and analyzed for this techniques in this work.
7

The enigma of imaging in the Maxwell fisheye medium

Sahebdivan, Sahar January 2016 (has links)
The resolution of optical instruments is normally limited by the wave nature of light. Circumventing this limit, known as the diffraction limit of imaging, is of tremendous practical importance for modern science and technology. One method, super-resolved fluorescence microscopy was distinguished with the Nobel Prize in Chemistry in 2014, but there is plenty of room for alternatives and complementary methods such as the pioneering work of Prof. J. Pendry on the perfect lens based on negative refraction that started the entire research area of metamaterials. In this thesis, we have used analytical techniques to solve several important challenges that have risen in the discussion of the microwave experimental demonstration of absolute optical instruments and the controversy surrounding perfect imaging. Attempts to overcome or circumvent Abbe's diffraction limit of optical imaging, have traditionally been greeted with controversy. In this thesis, we have investigated the role of interacting sources and detectors in perfect imaging. We have established limitations and prospects that arise from interactions and resonances inside the lens. The crucial role of detection becomes clear in Feynman's argument against the diffraction limit: “as Maxwell's electromagnetism is invariant upon time reversal, the electromagnetic wave emitted from a point source may be reversed and focused into a point with point-like precision, not limited by diffraction.” However, for this, the entire emission process must be reversed, including the source: A point drain must sit at the focal position, in place of the point source, otherwise, without getting absorbed at the detector, the focused wave will rebound and the superposition of the focusing and the rebounding wave will produce a diffraction-limited spot. The time-reversed source, the drain, is the detector which taking the image of the source. In 2011-2012, experiments with microwaves have confirmed the role of detection in perfect focusing. The emitted radiation was actively time-reversed and focused back at the point of emission, where, the time-reversed of the source sits. Absorption in the drain localizes the radiation with a precision much better than the diffraction limit. Absolute optical instruments may perform the time reversal of the field with perfectly passive materials and send the reversed wave to a different spatial position than the source. Perfect imaging with absolute optical instruments is defected by a restriction: so far it has only worked for a single–source single–drain configuration and near the resonance frequencies of the device. In chapters 6 and 7 of the thesis, we have investigated the imaging properties of mutually interacting detectors. We found that an array of detectors can image a point source with arbitrary precision. However, for this, the radiation has to be at resonance. Our analysis has become possible thanks to a theoretical model for mutually interacting sources and drains we developed after considerable work and several failed attempts. Modelling such sources and drains analytically had been a major unsolved problem, full numerical simulations have been difficult due to the large difference in the scales involved (the field localization near the sources and drains versus the wave propagation in the device). In our opinion, nobody was able to reproduce reliably the experiments, because of the numerical complexity involved. Our analytic theory draws from a simple, 1–dimensional model we developed in collaboration with Tomas Tyc (Masaryk University) and Alex Kogan (Weizmann Institute). This model was the first to explain the data of experiment, characteristic dips of the transmission of displaced drains, which establishes the grounds for the realistic super-resolution of absolute optical instruments. As the next step in Chapter 7 we developed a Lagrangian theory that agrees with the simple and successful model in 1–dimension. Inspired by the Lagrangian of the electromagnetic field interacting with a current, we have constructed a Lagrangian that has the advantage of being extendable to higher dimensions in our case two where imaging takes place. Our Lagrangian theory represents a device-independent, idealized model independent of numerical simulations. To conclude, Feynman objected to Abbe's diffraction limit, arguing that as Maxwell's electromagnetism is time-reversal invariant, the radiation from a point source may very well become focused in a point drain. Absolute optical instruments such as the Maxwell Fisheye can perform the time reversal and may image with a perfect resolution. However, the sources and drains in previous experiments were interacting with each other as if Feynman's drain would act back to the source in the past. Different ways of detection might circumvent this feature. The mutual interaction of sources and drains does ruin some of the promising features of perfect imaging. Arrays of sources are not necessarily resolved with arrays of detectors, but it also opens interesting new prospects in scanning near-fields from far–field distances. To summarise the novel idea of the thesis: • We have discovered and understood the problems with the initial experimental demonstration of the Maxwell Fisheye. • We have solved a long-standing challenge of modelling the theory for mutually interacting sources and drains. • We understand the imaging properties of the Maxwell Fisheye in the wave regime. Let us add one final thought. It has taken the scientific community a long time of investigation and discussion to understand the different ingredients of the diffraction limit. Abbe's limit was initially attributed to the optical device only. But, rather all three processes of imaging, namely illumination, transfer and detection, make an equal contribution to the total diffraction limit. Therefore, we think that for violating the diffraction limit one needs to consider all three factors together. Of course, one might circumvent the limit and achieve a better resolution by focusing on one factor, but that does not necessary imply the violation of a fundamental limit. One example is STED microscopy that focuses on the illumination, another near–field scanning microscopy that circumvents the diffraction limit by focusing on detection. Other methods and strategies in sub-wavelength imaging –negative refraction, time reversal imaging and on the case and absolute optical instruments –are concentrating on the faithful transfer of the optical information. In our opinion, the most significant, and naturally the most controversial, part of our findings in the course of this study was elucidating the role of detection. Maxwell's Fisheye transmits the optical information faithfully, but this is not enough. To have a faithful image, it is also necessary to extract the information at the destination. In our last two papers, we report our new findings of the contribution of detection. We find out in the absolute optical instruments, such as the Maxwell Fisheye, embedded sources and detectors are not independent. They are mutually interacting, and this interaction influences the imaging property of the system.
8

Técnicas de desempenho óptico e avaliação da qualidade de imagem em sistemas ópticos por medição de função de transferência / Optical techiques and image quality evaluation in optical systems by optical transfer function measuremente

Fatima Maria Mitsue Yasuoka 08 May 1997 (has links)
O propósito deste trabalho tem sido a utilização das técnicas de Desenho Óptico para o desenvolvimento de sistemas ópticos altamente otimizados. Após a confeccção destes sistemas ópticos torna-se necessário avaliar o desempenho do sistema construído, para isto tem sido utilizado uma das técnicas mais modernas para avaliação de qualidade da imagem óptica, a função de transferência óptica FTO, mais especificamente a função de transferência de modulação FTM. FTM representa o módulo da função complexa FTO e está associada à medida direta e quantitativa da qualidade de imagem, descrevendo a estrutura da imagem como uma função da freqüência espacial. Estas duas técnicas são as ferramentas fundamentais para os desenhistas ópticos. Instrumentos oftálmicos como o microscópio cirúrgico, sistema óptico para adaptação de uma câmera CCD e a lâmpada de fenda são desenvolvidos e analisados por estas técnicas neste trabalho. / The purpose of this work has been the use of design optical techniques to development of highly optimized optical systems. After the fabrication of these systems, it is necessary to evaluate the performance of building systems. A modern technique used to evaluate the quality of optical image is the optical transfer function OTF, more exactly the modulation transfer function MTF. MTF is the modulus of the complex function OTF. MTF is associated the direct and quantitative measure of the image quality and it describes the image structure as a function of spatial frequency. This bides techniques are the tools of optical designers. Ophthalmic instruments like surgery microscope, optical system of CCD camera adaptation and slit lamps are developed and analyzed for this techniques in this work.
9

Terahertz Near-field Investigation of a Plasmonic GaAs Superlens

Fehrenbacher, Markus 26 April 2016 (has links)
This work presents the first demonstration of a semiconductor based plasmonic near-field superlens, utilizing highly doped GaAs to generate infrared optical images with a spatial resolution beyond the difraction limit. Being easily transferable to other semiconductor materials, the concept described in this thesis can be exploited to realize spectrally adjustable superlenses in a wide spectral range. The idea of superlensing has been introduced theoretically in 2000, followed by numerous publications including experimental studies. The effect initiated great interest in optics, since in contrast to difraction limited conventional optical microscopy it enables subwavelength resolved imaging by reconstructing the evanescent waves emerging from an object. With techniques like scanning near-field optical microscopy (SNOM) and stimulated emission depletion (STED) being already successfully established to overcome the conventional restrictions, the concept of superlensing provides a novel, different route towards high resolution. Superlensing is a resonant phenomenon, relying either on the excitation of surface plasmons in metallic systems or on phonon resonances in dielectric structures. In this respect a superlens based on doped semiconductor benefits from the potential to be controlled in its operational wavelength by shifting the plasma frequency through adjustment of the free carrier concentration. For a proof of principle demonstration, we investigate a superlens consisting of a highly n-doped GaAs layer (n = 4 x 10^18 cm-3) sandwiched between two intrinsic layers. Recording near-field images of subwavelength sized gold stripes through the trilayer structure by means of SNOM in combination with a free-electron laser, we observe both enhanced signal and improved spatial resolution at radiation wavelengths close to l = 22 µm, which is in excellent agreement with simulations based on the Drude-Lorentz model of free electrons. Here, comparative investigations of a purely intrinsic reference sample confirm that the effect is mediated by the charge carriers within the doped layer. Furthermore, slightly differently doped samples provide indications for the expected spectral shift of the resonance. According to our calculations, the wavelength range to be exploited by n-GaAs based superlenses reaches far into the terahertz region, whereas other semiconductor materials are required to explore the near infrared.
10

Light-matter Interactions Of Plasmonic Nanostructures

Reed, Jennifer 01 January 2013 (has links)
Light interaction with matter has long been an area of interest throughout history, spanning many fields of study. In recent decades, the investigation of light-matter interactions with nanostructures has become an intense area of research in the field of photonics. Metallic nanostructures, in particular, are of interest due to the interesting properties that arise when interacting with light. The properties are a result of the excitation of surface plasmons which are the collective oscillation of the conduction electrons in the metal. Since the conduction electrons can be thought of as harmonic oscillators, they are quantized in a similar fashion. Just as a photon is a quantum of oscillations of an electromagnetic field, the plasmon is a quantum of electron oscillations of a metal. There are three types of plasmons: 1. Bulk plasmons, also called volume plasmons, are longitudinal density fluctuations which propagate through a bulk metal with an eigenfrequency of �� called the plasma frequency. 2. Localized surface plasmons are non-propagating excitations of the conduction electrons of a metallic nanoparticle coupled to an electromagnetic field. 3. Surface plasmon polaritons are evanescent, dispersive propagating electromagnetic waves formed by a coupled state between a photon and the excitation of the surface plasmons. They propagate along the surface of a metal-dielectric interface with a broad spectrum of eigenfrequencies from � = 0 to � = ��⁄√2. iv Plasmonics is a subfield of photonics which focuses on the study of surface plasmons and the optical properties that result from light interacting with metal films and nanostructures on the deep subwavelength scale. In this thesis, plasmonic nanostructures are investigated for optical waveguides and other nanophotonic applications through computational simulations primarily base on electrodynamic theory. The theory was formulated by several key figures and established by James Clerk Maxwell after he published a set of relations which describe all classical electromagnetic phenomena, known as Maxwell’s equations. Using methods based on Maxwell’s equations, the optical properties of metallic nanostructures utilizing surface plasmons is explored. In Chapter 3, light propagation of bright and dark modes of a partially and fully illuminated silver nanorod is investigated for waveguide applications. Then, the origin of the Fano resonance line shape in the scattering spectra of a silver nanorod is investigated. Next, in Chapter 4, the reflection and transmission of a multilayer silver film is simulated to observe the effects of varying the dielectric media between the layers on light propagation. Building on the multilayer film work, metal-insulator-metal waveguides are explored by perforating holes in the bottom layer of a two layer a silver film to investigate the limits of subwavelength light trapping, confinement, and propagation. Lastly, in Chapter 5, the effect of surface plasmons on the propagation direction of electromagnetic wave around a spherical silver nanoparticle which shows an effective negative index of refraction is examined. In addition, light manipulation using a film of silver prisms with an effective negative index of refraction is also investigated. The silver prisms demonstrate v polarization selective propagation for waveguide and optical filter applications. These studies provide insight into plasmonic mechanisms utilized to overcome the diffraction limit of light. Through better understanding of how to manipulating light with plasmonic nanostructures, further advancements in nanophotonic technologies for applications such as extremely subwavelength waveguides, sensitive optical detection, optical filters, polarizers, beam splitters, optical data storage devices, high speed data transmission, and integrated subwavelength photonic circuits can be achieved.

Page generated in 0.11 seconds