Spelling suggestions: "subject:"diffusions croisée"" "subject:"diffusions croisés""
1 |
Modélisation et Analyse Mathématique d'Equations aux Dérivées Partielles Issues de la Physique et de la Biologie / Qualitative analysis of some singular partial differential equations arising in Physics and in BiologyHoullier - Trescases, Ariane 11 September 2015 (has links)
Ce manuscrit présente des résultats d’analyse mathématique autour de deux exemples de problèmes singuliers d’équations aux dérivées partielles issus de la modélisation. I. Diffusion croisée en dynamique des populations. En dynamique des populations, les systèmes de réaction –diffusion croisée modélisent l’évolution de populations d’espèces en compétition avec un effet répulsif entre les individus. Pour ces systèmes fortement couplés, souvent non linéaires, une question aussi fondamentale que l’existence de solutions se révèle extrêmement complexe. Dans ce manuscrit, on introduit une approche basée sur des extensions récentes de lemmes de dualité et sur des méthodes d’entropie. On démontre l’existence de solutions faibles dans un cadre général de systèmes de réaction-diffusion croisée, ainsi que certaines propriétés qualitatives des solutions. II. Équation de Boltzmann en domaine borné. L’équation de Boltzmann, introduite en 1872, modélise la dynamique des gaz raréfiés hors équilibre. Malgré les nombreux résultats autour de la question de l’existence de solutions fortes proches de l’équilibre, très peu concernent le cas d’un domaine borné, situation pourtant fréquente dans les applications. Une raison de la difficulté du problème est l’irruption des singularités le long des trajectoires rasant le bord du domaine. Dans ce manuscrit, on présente une théorie de la régulation de l’équation de Boltzmann en domaine borné. Grâce à l’introduction d’une distance cinétique qui compense les singularités au bord, on montre des résultats de propagation de normes de Sobolev et de propagation C^1 en domaine convexe. En domaine non convexe, on montre un résultat de propagation de régularité BV. / This manuscript presents results of mathematical analysis concerning two singular problems of partial differential equations coming from the modeling. I. Cross-diffusion in Population dynamics. In Population dynamics, reaction-cross diffusion systems model the evolution of the populations of competing species with a repulsive effect between individuals. For these strongly coupled, often non linear systems, a question as basic as the existence of solutions appears to be extremely complex. In this manuscript, we introduce an approach based on the most recent extensions of duality lemmas and on entropy methods. We prove the existence of weak solutions in a general setting of reaction-cross diffusion systems, as well as some qualitative properties of the solutions. II. Boltzmann equation in bounded domains The Boltzmann equation, introduced in 1872, model the evolution of a rarefied gas out of equilibrium. Despite the numerous results concerning the existence of strong solutions close to equilibrium, very few concern the case of bounded domain, though this situation is very useful in applications. A crucial reason of the difficulty of this problem is the formation of a singularity on the trajectories grazing the boundary. In this manuscript, we present a theory of the regularity of the Boltzmann equation in bounded domains. Thanks to the introduction of a kinetic distance which balances the singularity, we obtain results of propagation of Sobolev norms and C^1 propagation in convex domains. In non convex domains, we obtain the propagation of BV regularity.
|
2 |
Analyse de la dynamique de certains modèles proie-prédateur et applications / Analysis of dynamic models of certain prey-predator and applicationsAbid, Walid 04 February 2016 (has links)
Cette thèse est consacrée à l’étude de la dynamique de quelques problèmes de proie-prédateur de type Leslie-Gower avec des systèmes d’équations différentielles ordinaires et des équations de réaction-diffusion. L’objectif principal est de faire l’analyse mathématique, la simulation numérique des modèles construits. La thèse est divisée en trois parties : La première partie est consacrée à un système proie-prédateur avec récolte de proie, le modèle est donné par un système d’équation différentielle ordinaire. Le but de cette partie est d’étudier l’impact de la récolte sur le comportement du système. Dans la deuxième partie, nous introduisons la dimension spatiale dans le modèle dynamique considéré sans récolte, modélisant une chaîne alimentaire de deux espèces avec diffusion sur un domaine circulaire et une fonction de réponse de Holling type II. Nous effectuons une analyse théorique complète de la dynamique spatio-temporelle du modèle construit ainsi que l’étude du système sur le domaine circulaire. Une étude mathématique similaire est menée dans le cadre de la réponse fonctionnelle de Benddington-DeAngelis. Nous étudions, aussi le comportement qualitatif d’une chaîne alimentaire de trois espèces avec une réponse fonctionnelle de Holling type II. Dans la dernière partie, nous introduisons des termes de diffusions croisées dans le modèle dynamique considéré dans le but d’avoir l’effet de ce dernier sur le comportement du système. / This thesis is devoted to the study of the dynamics of some problems Leslie Gower-type predator-prey with ordinary differential equations and reaction-diffusion equations. The main objective is to make mathematical analysis, numerical simulation of constructed models. The thesis is divided in three parts : The first part is devoted to a predator-prey system with prey harvesting, the model is given by an ordinary differential equation system. The aim of this part is to study the impact of harvesting on the system behavior. In the second part, we introduce the spatial dimension in the dynamic model considered without harvesting, modeling a food chain of two species with diffusion on the circular area and Holling Type II response function. We perform a complete theoretical analysis of the spatiotemporal dynamics model built and the system study on the circular area. A similar mathematical study is conducted as part of the functional response of Benddington-DeAngelis.We study, also the qualitative behavior of a food chain of three species with a Holling type II response function. In the last party, we introduce of cross-diffusion terms in the considered dynamic model in order to have the effect of the latter on the system behavior.
|
3 |
Global existence and fast-reaction limit in reaction-diffusion systems with cross effects / Existence globale et limite de réaction rapide dans des systèmes de réaction-diffusion avec effets croisésRolland, Guillaume 07 December 2012 (has links)
Cette thèse est consacrée à l'étude de systèmes d'équations aux dérivées partielles paraboliques issus de modèles de cinétique chimique, de dynamique des populations et de la théorie de l'électromigration. On s'intéresse à des questions d'existence de solutions globales en temps, à l'unicité de solutions faibles, ainsi qu'à la limite de réaction rapide dans un système de réaction-diffusion. Dans un premier chapitre, on étudie deux systèmes aux diffusions croisées. On commence par s'intéresser à un modèle de dynamique des populations, où les effets croisés dans les interactions entre les différentes espèces sont modélisés par des opérateurs non locaux. Pour toute dimension d'espace, on prouve l'existence et l'unicité de solutions globales régulières. On s'intéresse ensuite à un système aux diffusions croisées qui apparait comme la limite de réaction rapide d'un système classique associé à la réaction chimique C1+C2=C3. On prouve alors la convergence lorsque k tend vers l'infini de la solution du système avec une vitesse de réaction finie k vers une solution globale du système limite. Le second chapitre contient de nouveaux résultats d'existence globale pour des systèmes de réaction-diffusion. Pour des réseaux de réactions chimiques élémentaires du type Ci+Cj=Ck qui suivent la loi d'Action de Masse, on montre l'existence et l'unicité de solutions globales fortes, pour des dimensions en espace N<6 dans le cas semi-linéaire et N<4 dans le cas quasi-linéaire. On montre aussi l'existence de solutions globales faibles pour une classe de systèmes paraboliques quasi-linéaires dont les non-linéarités sont au plus quadratiques et dont les données initiales sont seulement supposées positives et intégrables. Dans le dernier chapitre, on généralise un résultat d'existence globale de solutions fortes pour des systèmes de réaction-diffusion dont les non-linéarités ont une structure "triangulaire", pour lesquels on prend désormais en compte des termes d'advection et des coefficients de diffusion dépendant du temps et de la variable d'espace. Ce résultat est ensuite utilisé dans un argument de point fixe de Leray-Schauder pour prouver l'existence en toute dimension de solutions globales à un problème d'électromigration-diffusion. / This thesis is devoted to the study of parabolic systems of partial differential equations arising in mass action kinetics chemistry, population dynamics and electromigration theory. We are interested in the existence of global solutions, uniqueness of weak solutions, and in the fast-reaction limit in a reaction-diffusion system. In the first chapter, we study two cross-diffusion systems. We are first interested in a population dynamics model, where cross effects in the interactions between the different species are modeled by non-local operators. We prove the well-posedness of the corresponding system for any space dimension. We are then interested in a cross-diffusion system which arises as the fast-reaction limit system in a classical system for the chemical reaction C1+C2=C3. We prove the convergence when k goes to infinity of the solution of the system with finite reaction speed k to a global solution of the limit system. The second chapter contains new global existence results for some reaction-diffusion systems. For networks of elementary chemical reactions of the type Ci+Cj=Ck and under Mass Action Kinetics assumption, we prove the existence and uniqueness of global strong solutions, for space dimensions N<6 in the semi-linear case, and N<4 in the quasi-linear case. We also prove the existence of global weak solutions for a class of parabolic quasi-linear systems with at most quadratic non-linearities and with initial data that are only assumed to be nonnegative and integrable. In the last chapter, we generalize a global well-posedness result for reaction-diffusion systems whose nonlinearities have a "triangular" structure, for which we now take into account advection terms and time and space dependent diffusion coefficients. The latter result is then used in a Leray-Schauder fixed point argument to prove the existence of global solutions in a diffusion-electromigration system.
|
4 |
Dynamique spatio-temporelle et identification des diffusions non linéairesAli, Naamat 11 July 2013 (has links) (PDF)
Cette thèse est consacrée à l'étude des systèmes d'équations différentielles ordinaires, et ceux aux dérivées partielles paraboliques issus de modèles de dynamique des populations et de la biologie. L'objectif principal est de faire l'analyse mathématique, la simulation numérique ainsi que l'identification des diffusions croisées dans les modèles construits. Nous présentons d'abord un système de réaction-diffusion modélisant la croissance de plantes en compétition spatiale dans un milieu saturé. Nous effectuons par la suite l'étude théorique et numérique de tels systèmes, ainsi que l'étude des problèmes d'identification des termes de diffusions croisées. Ensuite, nous proposons un modèle proie-prédateur de type Leslie-Gower modifié avec une fonction de réponse de type Crowley-Martin. Nous étudions dans un premier temps la dynamique temporelle globale du modèle considéré, et nous présentons des simulations numériques pour illustrer les résultats théoriques. En outre, nous introduisons la dimension spatiale dans le modèle dynamique considéré, et nous effectuons une analyse théorique complète de la dynamique spatio-temporelle du modèle.
|
5 |
Dynamique spatio-temporelle et identification des diffusions non linéaires / Spation-temporal dynamics and identification of nonlinear diffusionsAli, Naamat 11 July 2013 (has links)
Cette thèse est consacrée à l’étude des systèmes d’équations différentielles ordinaires, et ceux aux dérivées partielles paraboliques issus de modèles de dynamique des populations et de la biologie. L’objectif principal est de faire l’analyse mathématique, la simulation numérique ainsi que l’identification des diffusions croisées dans les modèles construits. Nous présentons d’abord un système de réaction-diffusion modélisant la croissance de plantes en compétition spatiale dans un milieu saturé. Nous effectuons par la suite l’étude théorique et numérique de tels systèmes, ainsi que l’étude des problèmes d’identification des termes de diffusions croisées. Ensuite, nous proposons un modèle proie-prédateur de type Leslie-Gower modifié avec une fonction de réponse de type Crowley-Martin. Nous étudions dans un premier temps la dynamique temporelle globale du modèle considéré, et nous présentons des simulations numériques pour illustrer les résultats théoriques. En outre, nous introduisons la dimension spatiale dans le modèle dynamique considéré, et nous effectuons une analyse théorique complète de la dynamique spatio-temporelle du modèle. / This thesis is devoted to the study of ordinary differential systems, and systems of non linear parabolic PDEs resulting from models of population dynamics and biology. The main objective is to perform mathematical analysis, numerical simulations, and identification of cross-diffusion in built models. We first present a reaction-diffusion system that models the spatial competition of plants in a saturated environment. We then perform a theoretical and a numerical study of such systems, and handle the identification of cross-diffusion problem. Secondly, we propose a modified Leslie-Gower-type predator-prey model with a Crowley-Martin type functional response. Within this context, we study the global temporal dynamics of the considered model, and present numerical simulations as illustration of the theoretical results. Finally, we introduce the spatial dimension in the previous dynamical model, and perform a comprehensive theoretical analysis of the spatio-temporal model.
|
6 |
Systèmes de particules en interaction, approche par flot de gradient dans l'espace de Wasserstein / Interacting particles systems, Wasserstein gradient flow approachLaborde, Maxime 01 December 2016 (has links)
Depuis l’article fondateur de Jordan, Kinderlehrer et Otto en 1998, il est bien connu qu’une large classe d’équations paraboliques peuvent être vues comme des flots de gradient dans l’espace de Wasserstein. Le but de cette thèse est d’étendre cette théorie à certaines équations et systèmes qui n’ont pas exactement une structure de flot de gradient. Les interactions étudiées sont de différentes natures. Le premier chapitre traite des systèmes avec des interactions non locales dans la dérive. Nous étudions ensuite des systèmes de diffusions croisées s’appliquant aux modèles de congestion pour plusieurs populations. Un autre modèle étudié est celui où le couplage se trouve dans le terme de réaction comme les systèmes proie-prédateur avec diffusion ou encore les modèles de croissance tumorale. Nous étudierons enfin des systèmes de type nouveau où l’interaction est donnée par un problème de transport multi-marges. Une grande partie de ces problèmes est illustrée de simulations numériques. / Since 1998 and the seminal work of Jordan, Kinderlehrer and Otto, it is well known that a large class of parabolic equations can be seen as gradient flows in the Wasserstein space. This thesis is devoted to extensions of this theory to equations and systems which do not have exactly a gradient flow structure. We study different kind of couplings. First, we treat the case of nonlocal interactions in the drift. Then, we study cross diffusion systems which model congestion for several species. We are also interested in reaction-diffusion systems as diffusive prey-predator systems or tumor growth models. Finally, we introduce a new class of systems where the interaction is given by a multi-marginal transport problem. In many cases, we give numerical simulations to illustrate our theorical results.
|
Page generated in 0.0526 seconds