• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 112
  • 32
  • 8
  • 6
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 222
  • 222
  • 74
  • 60
  • 56
  • 50
  • 37
  • 36
  • 33
  • 32
  • 30
  • 29
  • 29
  • 27
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Sobre coleções e aspectos de centralidade em dados multidimensionais / On collections and centrality aspects of multidimensional data

Oliveira, Douglas Cedrim 14 June 2016 (has links)
A análise de dados multidimensionais tem sido por muitos anos tópico de contínua investigação e uma das razões se deve ao fato desse tipo de dados ser encontrado em diversas áreas da ciência. Uma tarefa comum ao se analisar esse tipo de dados é a investigação de padrões pela interação em projeções multidimensionais dos dados para o espaço visual. O entendimento da relação entre as características do conjunto de dados (dataset) e a técnica utilizada para se obter uma representação visual desse dataset é de fundamental importância uma vez que esse entendimento pode fornecer uma melhor intuição a respeito do que se esperar da projeção. Por isso motivado, no presente trabalho investiga-se alguns aspectos de centralidade dos dados em dois cenários distintos: coleções de documentos com grafos de coautoria; dados multidimensionais mais gerais. No primeiro cenário, o dado multidimensional que representa os documentos possui informações mais específicas, o que possibilita a combinação de diferentes aspectos para analisá-los de forma sumarizada, bem como a noção de centralidade e relevância dentro da coleção. Isso é levado em consideração para propor uma metáfora visual combinada que possibilite a exploração de toda a coleção, bem como de documentos individuais. No segundo cenário, de dados multidimensionais gerais, assume-se que tais informações não estão disponíveis. Ainda assim, utilizando um conceito de estatística não-paramétrica, deno- minado funções de profundidade de dados (data-depth functions), é feita a avaliação da ação de técnicas de projeção multidimensionais sobre os dados, possibilitando entender como suas medidas de profundidade (centralidade) foram alteradas ao longo do processo, definindo uma também medida de qualidade para projeções. / Analysis of multidimensional data has been for many years a topic of continuous research and one of the reasons is such kind of data can be found on several different areas of science. A common task analyzing such data is to investigate patterns by interacting with spatializations of the data onto the visual space. Understanding the relation between underlying dataset characteristics and the technique used to provide a visual representation of such dataset is of fundamental importance since it can provide a better intuition on what to expect from the spatialization. Motivated by this, in this work we investigate some aspects of centrality on the data in two different scenarios: document collection with co-authorship graphs; general multidimensional data. In the first scenario, the multidimensional data which encodes the documents is much more information specific, meaning it makes possible to combine different aspects such as a summarized analysis, as well as the centrality and relevance notions among the documents in the collection. In order to propose a combined visual metaphor, this is taken into account make possible the visual exploration of the whole document collection as well as individual document analysis. In the second case, of general multidimensional data, there is an assumption that such additional information is not available. Nevertheless, using the concept of data-depth functions from non-parametric statistics it is analyzed the action of multidimensional projection techniques on the data, during the projection process, in order to make possible to understand how depth measures computed in the data have been modified along the process, which also defines a quality measure for multidimensional projections.
192

Emprego de técnicas de análise exploratória de dados utilizados em Química Medicinal / Use of different techniques for exploratory data analysis in Medicinal Chemistry

Gertrudes, Jadson Castro 10 September 2013 (has links)
Pesquisas na área de Química Medicinal têm direcionado esforços na busca por métodos que acelerem o processo de descoberta de novos medicamentos. Dentre as diversas etapas relacionadas ao longo do processo de descoberta de substâncias bioativas está a análise das relações entre a estrutura química e a atividade biológica de compostos. Neste processo, os pesquisadores da área de Química Medicinal analisam conjuntos de dados que são caracterizados pela alta dimensionalidade e baixo número de observações. Dentro desse contexto, o presente trabalho apresenta uma abordagem computacional que visa contribuir para a análise de dados químicos e, consequentemente, a descoberta de novos medicamentos para o tratamento de doenças crônicas. As abordagens de análise exploratória de dados, utilizadas neste trabalho, combinam técnicas de redução de dimensionalidade e de agrupamento para detecção de estruturas naturais que reflitam a atividade biológica dos compostos analisados. Dentre as diversas técnicas existentes para a redução de dimensionalidade, são discutidas o escore de Fisher, a análise de componentes principais e a análise de componentes principais esparsas. Quanto aos algoritmos de aprendizado, são avaliados o k-médias, fuzzy c-médias e modelo de misturas ICA aperfeiçoado. No desenvolvimento deste trabalho foram utilizados quatro conjuntos de dados, contendo informações de substâncias bioativas, sendo que dois conjuntos foram relacionados ao tratamento da diabetes mellitus e da síndrome metabólica, o terceiro conjunto relacionado a doenças cardiovasculares e o último conjunto apresenta substâncias que podem ser utilizadas no tratamento do câncer. Nos experimentos realizados, os resultados alcançados sugerem a utilização das técnicas de redução de dimensionalidade juntamente com os algoritmos não supervisionados para a tarefa de agrupamento dos dados químicos, uma vez que nesses experimentos foi possível descrever níveis de atividade biológica dos compostos estudados. Portanto, é possível concluir que as técnicas de redução de dimensionalidade e de agrupamento podem possivelmente ser utilizadas como guias no processo de descoberta e desenvolvimento de novos compostos na área de Química Medicinal. / Researches in Medicinal Chemistry\'s area have focused on the search of methods that accelerate the process of drug discovery. Among several steps related to the process of discovery of bioactive substances there is the analysis of the relationships between chemical structure and biological activity of compounds. In this process, researchers of medicinal chemistry analyze data sets that are characterized by high dimensionality and small number of observations. Within this context, this work presents a computational approach that aims to contribute to the analysis of chemical data and, consequently, the discovery of new drugs for the treatment of chronic diseases. Approaches used in exploratory data analysis, employed in this work, combine techniques of dimensionality reduction and clustering for detecting natural structures that reflect the biological activity of the analyzed compounds. Among several existing techniques for dimensionality reduction, we have focused the Fisher\'s score, principal component analysis and sparse principal component analysis. For the clustering procedure, this study evaluated k-means, fuzzy c-means and enhanced ICA mixture model. In order to perform experiments, we used four data sets, containing information of bioactive substances. Two sets are related to the treatment of diabetes mellitus and metabolic syndrome, the third set is related to cardiovascular disease and the latter set has substances that can be used in cancer treatment. In the experiments, the obtained results suggest the use of dimensionality reduction techniques along with clustering algorithms for the task of clustering chemical data, since from these experiments, it was possible to describe different levels of biological activity of the studied compounds. Therefore, we conclude that the techniques of dimensionality reduction and clustering can be used as guides in the process of discovery and development of new compounds in the field of Medicinal Chemistry
193

Sobre coleções e aspectos de centralidade em dados multidimensionais / On collections and centrality aspects of multidimensional data

Douglas Cedrim Oliveira 14 June 2016 (has links)
A análise de dados multidimensionais tem sido por muitos anos tópico de contínua investigação e uma das razões se deve ao fato desse tipo de dados ser encontrado em diversas áreas da ciência. Uma tarefa comum ao se analisar esse tipo de dados é a investigação de padrões pela interação em projeções multidimensionais dos dados para o espaço visual. O entendimento da relação entre as características do conjunto de dados (dataset) e a técnica utilizada para se obter uma representação visual desse dataset é de fundamental importância uma vez que esse entendimento pode fornecer uma melhor intuição a respeito do que se esperar da projeção. Por isso motivado, no presente trabalho investiga-se alguns aspectos de centralidade dos dados em dois cenários distintos: coleções de documentos com grafos de coautoria; dados multidimensionais mais gerais. No primeiro cenário, o dado multidimensional que representa os documentos possui informações mais específicas, o que possibilita a combinação de diferentes aspectos para analisá-los de forma sumarizada, bem como a noção de centralidade e relevância dentro da coleção. Isso é levado em consideração para propor uma metáfora visual combinada que possibilite a exploração de toda a coleção, bem como de documentos individuais. No segundo cenário, de dados multidimensionais gerais, assume-se que tais informações não estão disponíveis. Ainda assim, utilizando um conceito de estatística não-paramétrica, deno- minado funções de profundidade de dados (data-depth functions), é feita a avaliação da ação de técnicas de projeção multidimensionais sobre os dados, possibilitando entender como suas medidas de profundidade (centralidade) foram alteradas ao longo do processo, definindo uma também medida de qualidade para projeções. / Analysis of multidimensional data has been for many years a topic of continuous research and one of the reasons is such kind of data can be found on several different areas of science. A common task analyzing such data is to investigate patterns by interacting with spatializations of the data onto the visual space. Understanding the relation between underlying dataset characteristics and the technique used to provide a visual representation of such dataset is of fundamental importance since it can provide a better intuition on what to expect from the spatialization. Motivated by this, in this work we investigate some aspects of centrality on the data in two different scenarios: document collection with co-authorship graphs; general multidimensional data. In the first scenario, the multidimensional data which encodes the documents is much more information specific, meaning it makes possible to combine different aspects such as a summarized analysis, as well as the centrality and relevance notions among the documents in the collection. In order to propose a combined visual metaphor, this is taken into account make possible the visual exploration of the whole document collection as well as individual document analysis. In the second case, of general multidimensional data, there is an assumption that such additional information is not available. Nevertheless, using the concept of data-depth functions from non-parametric statistics it is analyzed the action of multidimensional projection techniques on the data, during the projection process, in order to make possible to understand how depth measures computed in the data have been modified along the process, which also defines a quality measure for multidimensional projections.
194

Análise da influência de funções de distância para o processamento de consultas por similaridade em recuperação de imagens por conteúdo / Analysis of the influence of distance functions to answer similarity queries in content-based image retrieval.

Bugatti, Pedro Henrique 16 April 2008 (has links)
A recuperação de imagens baseada em conteúdo (Content-based Image Retrieval - CBIR) embasa-se sobre dois aspectos primordiais, um extrator de características o qual deve prover as características intrínsecas mais significativas dos dados e uma função de distância a qual quantifica a similaridade entre tais dados. O grande desafio é justamente como alcançar a melhor integração entre estes dois aspectos chaves com intuito de obter maior precisão nas consultas por similaridade. Apesar de inúmeros esforços serem continuamente despendidos para o desenvolvimento de novas técnicas de extração de características, muito pouca atenção tem sido direcionada à importância de uma adequada associação entre a função de distância e os extratores de características. A presente Dissertação de Mestrado foi concebida com o intuito de preencher esta lacuna. Para tal, foi realizada a análise do comportamento de diferentes funções de distância com relação a tipos distintos de vetores de características. Os três principais tipos de características intrínsecas às imagens foram analisados, com respeito a distribuição de cores, textura e forma. Além disso, foram propostas duas novas técnicas para realização de seleção de características com o desígnio de obter melhorias em relação à precisão das consultas por similaridade. A primeira técnica emprega regras de associação estatísticas e alcançou um ganho de até 38% na precisão, enquanto que a segunda técnica utilizando a entropia de Shannon alcançou um ganho de aproximadamente 71% ao mesmo tempo em que reduz significantemente a dimensionalidade dos vetores de características. O presente trabalho também demonstra que uma adequada utilização das funções de distância melhora efetivamente os resultados das consultas por similaridade. Conseqüentemente, desdobra novos caminhos para realçar a concepção de sistemas CBIR / The retrieval of images by visual content relies on a feature extractor to provide the most meaningful intrinsic characteristics (features) from the data, and a distance function to quantify the similarity between them. A challenge in this field supporting content-based image retrieval (CBIR) to answer similarity queries is how to best integrate these two key aspects. There are plenty of researching on algorithms for feature extraction of images. However, little attention have been paid to the importance of the use of a well-suited distance function associated to a feature extractor. This Master Dissertation was conceived to fill in this gap. Therefore, herein it was investigated the behavior of different distance functions regarding distinct feature vector types. The three main types of image features were evaluated, regarding color distribution, texture and shape. It was also proposed two new techniques to perform feature selection over the feature vectors, in order to improve the precision when answering similarity queries. The first technique employed statistical association rules and achieve up to 38% gain in precision, while the second one employing the Shannon entropy achieved 71%, while siginificantly reducing the size of the feature vector. This work also showed that the proper use of a distance function effectively improves the similarity query results. Therefore, it opens new ways to enhance the acceptance of CBIR systems
195

Emprego de técnicas de análise exploratória de dados utilizados em Química Medicinal / Use of different techniques for exploratory data analysis in Medicinal Chemistry

Jadson Castro Gertrudes 10 September 2013 (has links)
Pesquisas na área de Química Medicinal têm direcionado esforços na busca por métodos que acelerem o processo de descoberta de novos medicamentos. Dentre as diversas etapas relacionadas ao longo do processo de descoberta de substâncias bioativas está a análise das relações entre a estrutura química e a atividade biológica de compostos. Neste processo, os pesquisadores da área de Química Medicinal analisam conjuntos de dados que são caracterizados pela alta dimensionalidade e baixo número de observações. Dentro desse contexto, o presente trabalho apresenta uma abordagem computacional que visa contribuir para a análise de dados químicos e, consequentemente, a descoberta de novos medicamentos para o tratamento de doenças crônicas. As abordagens de análise exploratória de dados, utilizadas neste trabalho, combinam técnicas de redução de dimensionalidade e de agrupamento para detecção de estruturas naturais que reflitam a atividade biológica dos compostos analisados. Dentre as diversas técnicas existentes para a redução de dimensionalidade, são discutidas o escore de Fisher, a análise de componentes principais e a análise de componentes principais esparsas. Quanto aos algoritmos de aprendizado, são avaliados o k-médias, fuzzy c-médias e modelo de misturas ICA aperfeiçoado. No desenvolvimento deste trabalho foram utilizados quatro conjuntos de dados, contendo informações de substâncias bioativas, sendo que dois conjuntos foram relacionados ao tratamento da diabetes mellitus e da síndrome metabólica, o terceiro conjunto relacionado a doenças cardiovasculares e o último conjunto apresenta substâncias que podem ser utilizadas no tratamento do câncer. Nos experimentos realizados, os resultados alcançados sugerem a utilização das técnicas de redução de dimensionalidade juntamente com os algoritmos não supervisionados para a tarefa de agrupamento dos dados químicos, uma vez que nesses experimentos foi possível descrever níveis de atividade biológica dos compostos estudados. Portanto, é possível concluir que as técnicas de redução de dimensionalidade e de agrupamento podem possivelmente ser utilizadas como guias no processo de descoberta e desenvolvimento de novos compostos na área de Química Medicinal. / Researches in Medicinal Chemistry\'s area have focused on the search of methods that accelerate the process of drug discovery. Among several steps related to the process of discovery of bioactive substances there is the analysis of the relationships between chemical structure and biological activity of compounds. In this process, researchers of medicinal chemistry analyze data sets that are characterized by high dimensionality and small number of observations. Within this context, this work presents a computational approach that aims to contribute to the analysis of chemical data and, consequently, the discovery of new drugs for the treatment of chronic diseases. Approaches used in exploratory data analysis, employed in this work, combine techniques of dimensionality reduction and clustering for detecting natural structures that reflect the biological activity of the analyzed compounds. Among several existing techniques for dimensionality reduction, we have focused the Fisher\'s score, principal component analysis and sparse principal component analysis. For the clustering procedure, this study evaluated k-means, fuzzy c-means and enhanced ICA mixture model. In order to perform experiments, we used four data sets, containing information of bioactive substances. Two sets are related to the treatment of diabetes mellitus and metabolic syndrome, the third set is related to cardiovascular disease and the latter set has substances that can be used in cancer treatment. In the experiments, the obtained results suggest the use of dimensionality reduction techniques along with clustering algorithms for the task of clustering chemical data, since from these experiments, it was possible to describe different levels of biological activity of the studied compounds. Therefore, we conclude that the techniques of dimensionality reduction and clustering can be used as guides in the process of discovery and development of new compounds in the field of Medicinal Chemistry
196

Dimensionality Reduction for fMRI Diagnostic Systems

Sidhu, Gagan Unknown Date
No description available.
197

Numerische Methoden zur Analyse hochdimensionaler Daten / Numerical Methods for Analyzing High-Dimensional Data

Heinen, Dennis 01 July 2014 (has links)
Diese Dissertation beschäftigt sich mit zwei der wesentlichen Herausforderungen, welche bei der Bearbeitung großer Datensätze auftreten, der Dimensionsreduktion und der Datenentstörung. Der erste Teil dieser Dissertation liefert eine Zusammenfassung über Dimensionsreduktion. Ziel der Dimensionsreduktion ist eine sinnvolle niedrigdimensionale Darstellung eines vorliegenden hochdimensionalen Datensatzes. Insbesondere diskutieren und vergleichen wir bewährte Methoden des Manifold-Learning. Die zentrale Annahme des Manifold-Learning ist, dass der hochdimensionale Datensatz (approximativ) auf einer niedrigdimensionalen Mannigfaltigkeit liegt. Störungen im Datensatz sind bei allen Dimensionsreduktionsmethoden hinderlich. Der zweite Teil dieser Dissertation stellt eine neue Entstörungsmethode für hochdimensionale Daten vor, eine Wavelet-Shrinkage-Methode für die Glättung verrauschter Abtastwerte einer zugrundeliegenden multivariaten stückweise stetigen Funktion, wobei die Abtastpunkte gestreut sein können. Die Methode stellt eine Verallgemeinerung und Weiterentwicklung der für die Bildkompression eingeführten "Easy Path Wavelet Transform" (EPWT) dar. Grundlage ist eine eindimensionale Wavelet-Transformation entlang (adaptiv) zu konstruierender Pfade durch die Abtastpunkte. Wesentlich für den Erfolg der Methode sind passende adaptive Pfadkonstruktionen. Diese Dissertation beinhaltet weiterhin eine kurze Diskussion der theoretischen Eigenschaften von Wavelets entlang von Pfaden sowie numerische Resultate und schließt mit möglichen Modifikationen der Entstörungsmethode.
198

Hyperspectral imagery algorithms for the processing of multimodal data : application for metal surface inspection in an industrial context by means of multispectral imagery, infrared thermography and stripe projection techniques / Algorithmes de l'imagerie hyperspectrale pour le traitement de données multimodales : application pour l’inspection de surfaces métalliques dans un contexte industriel par moyen de l’imagerie multispectrale, la thermographie infrarouge et des techniques de projection de franges

Benmoussat, Mohammed Seghir 19 December 2013 (has links)
Le travail présenté dans cette thèse porte sur l'inspection de surfaces métalliques industrielles. Nous proposons de généraliser des méthodes de l'imagerie hyperspectrale à des données multimodales comme des images optiques multi-canales, et des images thermographiques multi-temporelles. Dans la première application, les cubes de données sont construits à partir d'images multi-composantes pour détecter des défauts de surface. Les meilleures performances sont obtenues avec les éclairages multi-longueurs d'ondes dans le visible et le proche IR, et la détection du défaut en utilisant l'angle spectral, avec le spectre moyen comme référence. La deuxième application concerne l'utilisation de l'imagerie thermique pour l'inspection de pièces métalliques nucléaires afin de détecter des défauts de surface et sub-surface. Une approche 1D est proposée, basée sur l'utilisation du kurtosis pour sélectionner la composante principale parmi les premières obtenues après réduction des données avec l’ACP. La méthode proposée donne de bonnes performances avec des données non-bruitées et homogènes, cependant la SVD avec les algorithmes de détection d'anomalies est très robuste aux perturbations. Finalement, une approche, basée sur les techniques d'analyse de franges et la lumière structurée est présentée, dans le but d'inspecter des surfaces métalliques à forme libre. Après avoir déterminé les paramètres décrivant les modèles de franges sinusoïdaux, l'approche proposée consiste à projeter une liste de motifs déphasés et à calculer l'image de phase des motifs enregistrés. La localisation des défauts est basée sur la détection et l'analyse des franges dans les images de phase. / The work presented in this thesis deals with the quality control and inspection of industrial metallic surfaces. The purpose is the generalization and application of hyperspectral imagery methods for multimodal data such as multi-channel optical images and multi-temporal thermographic images. In the first application, data cubes are built from multi-component images to detect surface defects within flat metallic parts. The best performances are obtained with multi-wavelength illuminations in the visible and near infrared ranges, and detection using spectral angle mapper with mean spectrum as a reference. The second application turns on the use of thermography imaging for the inspection of nuclear metal components to detect surface and subsurface defects. A 1D approach is proposed based on using the kurtosis to select 1 principal component (PC) from the first PCs obtained after reducing the original data cube with the principal component analysis (PCA) algorithm. The proposed PCA-1PC method gives good performances with non-noisy and homogeneous data, and SVD with anomaly detection algorithms gives the most consistent results and is quite robust to perturbations such as inhomogeneous background. Finally, an approach based on fringe analysis and structured light techniques in case of deflectometric recordings is presented for the inspection of free-form metal surfaces. After determining the parameters describing the sinusoidal stripe patterns, the proposed approach consists in projecting a list of phase-shifted patterns and calculating the corresponding phase-images. Defect location is based on detecting and analyzing the stripes within the phase-images.
199

Interprétation sémantique d'images hyperspectrales basée sur la réduction adaptative de dimensionnalité / Semantic interpretation of hyperspectral images based on the adaptative reduction of dimensionality

Sellami, Akrem 11 December 2017 (has links)
L'imagerie hyperspectrale permet d'acquérir des informations spectrales riches d'une scène dans plusieurs centaines, voire milliers de bandes spectrales étroites et contiguës. Cependant, avec le nombre élevé de bandes spectrales, la forte corrélation inter-bandes spectrales et la redondance de l'information spectro-spatiale, l'interprétation de ces données hyperspectrales massives est l'un des défis majeurs pour la communauté scientifique de la télédétection. Dans ce contexte, le grand défi posé est la réduction du nombre de bandes spectrales inutiles, c'est-à-dire de réduire la redondance et la forte corrélation de bandes spectrales tout en préservant l'information pertinente. Par conséquent, des approches de projection visent à transformer les données hyperspectrales dans un sous-espace réduit en combinant toutes les bandes spectrales originales. En outre, des approches de sélection de bandes tentent à chercher un sous-ensemble de bandes spectrales pertinentes. Dans cette thèse, nous nous intéressons d'abord à la classification d'imagerie hyperspectrale en essayant d'intégrer l'information spectro-spatiale dans la réduction de dimensions pour améliorer la performance de la classification et s'affranchir de la perte de l'information spatiale dans les approches de projection. De ce fait, nous proposons un modèle hybride permettant de préserver l'information spectro-spatiale en exploitant les tenseurs dans l'approche de projection préservant la localité (TLPP) et d'utiliser l'approche de sélection non supervisée de bandes spectrales discriminantes à base de contraintes (CBS). Pour modéliser l'incertitude et l'imperfection entachant ces approches de réduction et les classifieurs, nous proposons une approche évidentielle basée sur la théorie de Dempster-Shafer (DST). Dans un second temps, nous essayons d'étendre le modèle hybride en exploitant des connaissances sémantiques extraites à travers les caractéristiques obtenues par l'approche proposée auparavant TLPP pour enrichir la sélection non supervisée CBS. En effet, l'approche proposée permet de sélectionner des bandes spectrales pertinentes qui sont à la fois informatives, discriminantes, distinctives et peu redondantes. En outre, cette approche sélectionne les bandes discriminantes et distinctives en utilisant la technique de CBS en injectant la sémantique extraite par les techniques d'extraction de connaissances afin de sélectionner d'une manière automatique et adaptative le sous-ensemble optimal de bandes spectrales pertinentes. La performance de notre approche est évaluée en utilisant plusieurs jeux des données hyperspectrales réelles. / Hyperspectral imagery allows to acquire a rich spectral information of a scene in several hundred or even thousands of narrow and contiguous spectral bands. However, with the high number of spectral bands, the strong inter-bands spectral correlation and the redundancy of spectro-spatial information, the interpretation of these massive hyperspectral data is one of the major challenges for the remote sensing scientific community. In this context, the major challenge is to reduce the number of unnecessary spectral bands, that is, to reduce the redundancy and high correlation of spectral bands while preserving the relevant information. Therefore, projection approaches aim to transform the hyperspectral data into a reduced subspace by combining all original spectral bands. In addition, band selection approaches attempt to find a subset of relevant spectral bands. In this thesis, firstly we focus on hyperspectral images classification attempting to integrate the spectro-spatial information into dimension reduction in order to improve the classification performance and to overcome the loss of spatial information in projection approaches.Therefore, we propose a hybrid model to preserve the spectro-spatial information exploiting the tensor model in the locality preserving projection approach (TLPP) and to use the constraint band selection (CBS) as unsupervised approach to select the discriminant spectral bands. To model the uncertainty and imperfection of these reduction approaches and classifiers, we propose an evidential approach based on the Dempster-Shafer Theory (DST). In the second step, we try to extend the hybrid model by exploiting the semantic knowledge extracted through the features obtained by the previously proposed approach TLPP to enrich the CBS technique. Indeed, the proposed approach makes it possible to select a relevant spectral bands which are at the same time informative, discriminant, distinctive and not very redundant. In fact, this approach selects the discriminant and distinctive spectral bands using the CBS technique injecting the extracted rules obtained with knowledge extraction techniques to automatically and adaptively select the optimal subset of relevant spectral bands. The performance of our approach is evaluated using several real hyperspectral data.
200

Využití pokročilých statistických metod pro zpracování obrazu fluorescenční emise rostlin ovlivněných lokálním biotickým stresem / Utilization of advanced statistical methods for processing of florescence emission of plants affected by local biotic stress

MATOUŠ, Karel January 2008 (has links)
Chlorophyll fluorescence imaging is noninvasive technique often used in plant physiology, molecular biology and precision farming. Captured sequences of images record the dynamic of chlorophyll fluorescence emission which contain the information about spatial and time changes of photosynthetic activity of plant. The goal of this Ph.D. thesis is to contribute to the development of chlorophyll fluorescence imaging by application of advanced statistical techniques. Methods of statistical pattern recognition allow to identify images in the captured sequence that are reach for information about observed biotic stress and to find small subsets of fluorescence images suitable for following analysis. I utilized only methods for identification of small sets of images providing high performance with realistic time consumptions.

Page generated in 0.2181 seconds