Spelling suggestions: "subject:"direct laser writing"" "subject:"direct faser writing""
11 |
Fabrication of multifunctional aluminum surfaces using laser-based texturing methodsMilles, Stephan 18 August 2021 (has links)
Nature-inspired surfaces provide an endless potential for innovations and exploitations in material science and engineering for a broad range of applications. Particularly, significant progress has been achieved in the fields of ice formation and wetting phenomena on metallic surfaces. One of the most relevant wetting states is superhydrophobicity, which is characterized by the complete repellency of water droplets upon impinging on a surface. A superhydrophobic surface can be accompanied by additional functions such as anti- icing, corrosion-resistance or self-cleaning. A particularly attractive material to implement functional surfaces is aluminum, due to its outstanding mechanical properties such as lightweight and high strength combined with an excellent electrical conductivity and affordable price. Functionalized aluminum surfaces can further increase the added value of technical aluminum products which are used in the automotive, aerospace and life science industry among others.
A promising strategy to achieve multifunctionalities is by fabricating micrometer and submicrometer features on the material’s surface. Thus, surface texturing of aluminum components is an extremely relevant topic in science and engineering which affects all facets of our lives. Until now, micropatterned aluminum surfaces, that combine water- repellent, self-cleaning and icephobic properties, have not yet been completely explored.
The present doctoral thesis focuses on structuring aluminum substrates to fabricate multifunctional surfaces with superhydrophobic, self-cleaning and anti-icing properties. To accomplish this goal, scanner-based direct laser writing (DLW) and two- and four-beam direct laser interference patterning (DLIP) are applied to pattern micrometer and sub- micrometer features on aluminum. They are employed separately to fabricate single-scale textures, as well as in combination in order to obtain multi-scale geometries and complex patterns.
The laser texturing parameters are optimized to maximize the addressed functionalities and their influence on the microstructure are studied. In order to explain the wetting and freezing behavior of the functional surfaces, numerical heat transfer simulation models are applied. The most promising textures are then selected and tested under realistic icing conditions simulating the freezing behavior of water droplets on aircraft parts during flight. Moreover, a new method to characterize the self-cleaning efficiency of laser-patterned aluminum is developed.
The textured aluminum surfaces attained a water-repellent functionality with a static water contact angle of up to 163° and a sliding angle of 12° without chemical post-processing. This functionality permitted a self-cleaning property where the DLIP and DLW+DLIP structures provided a maximum self-cleaning efficiency with remaining contamination as low as 1 %. The ice-repellent characterization at a temperature of -20°C revealed that in all investigated laser-structured surfaces the freezing time of 8 μl droplets increased up to three times compared to an unstructured reference. Moreover, it was demonstrated, that optimized surface textures led to a reduction of the ice adhesion strength by up to 90 %.:Selbstständigkeitserklärung
Kurzfassung
Abstract
Acknowledgements
Table of content
List of abbreviations and symbols
1 Motivation
2 Theoretical principles and definitions
3 State of the art
4 Materials and methods
5 Results and discussion
6 Conclusions
7 Outlook
Literature
Curriculum vitae of the author
List of publications / Von der Natur inspirierte Oberflächen bergen ein endloses Potential für Innovationen auf den Gebieten der Materialwissenschaft und demonstrieren ein breites Anwendungsfeld. Insbesondere in den Bereichen der Eisbildung und der Benetzungsphänomene auf Metalloberflächen wurde ein bedeutender Fortschritt erzielt. Einer der relevantesten Benetzungszustände ist der der Superhydrophobizität, welcher sich durch die vollständige Abweisung von Wassertropfen auszeichnet, sobald diese auf eine Oberfläche auftreffen. Eine superhydrophobe Oberfläche kann von zusätzlichen Funktionen wie Vereisungsschutz, Korrosionsbeständigkeit oder Selbstreinigung begleitet werden. Dabei ist besonders der Werkstoff Aluminium zur Realisierung funktionaler Oberflächen attraktiv, aufgrund seiner mechanischen Eigenschaften wie etwa ein geringes Gewicht und eine hohe Festigkeit bei gleichzeitig hervorragender elektrischer Leitfähigkeit ergänzt durch einen günstigen Preis. Funktionalisierte Aluminiumoberflächen können die Wertschöpfung von technischen Aluminiumprodukten deutlich erhöhen. Diese werden u.a. im Automobilsektor, in der Luft- und Raumfahrtindustrie oder im Life-Science-Bereich eingesetzt.
Ein vielversprechender Ansatz zur Realisierung multifunktionaler Eigenschaften basiert auf der Herstellung von Mikrometer- und Submikrometer-Strukturen auf der Oberfläche. Daher stellt die Texturierung von Aluminiumkomponenten ein äußerst relevantes Thema in der Wissenschaft und Technik dar, da sie sämtliche Facetten unseres täglichen Lebens tangiert. Bis heute sind laser-strukturierte Aluminiumoberflächen, die wasserabweisende, selbstreinigende und eisabweisende Eigenschaften vereinen, noch nicht vollständig erforscht.
Die zugrunde liegende Dissertation thematisiert die Strukturierung von Aluminiumsubstraten zur Herstellung multifunktionaler Oberflächen mit superhydrophoben, selbstreinigenden und vereisungsmindernden Eigenschaften. Dafür, werden direktes Laserschreiben (engl. Direct laser writing, DLW) sowie die direkte Laserinterferenzstrukturierung (engl. Direct laser interference patternin, DLIP) auf Aluminium angewendet. Die Verfahren werden sowohl separat zur Herstellung von einskaligen Texturen als auch in Kombination eingesetzt, um mehrskalige komplexe Muster zu fertigen. Die Strukturierungsparameter werden zur Maximierung der erwähnten Eigenschaften hin optimiert, und ihr Einfluß auf die Mikrostruktur wird untersucht. Um das Benetzungs- und Vereisungsverhalten der funktionalisierten Oberflächen zu erklären, werden numerische Simulationsmodelle eingesetzt. Die vielversprechendsten Texturen werden unter realistischen Vereisungsbedingungen getestet, welche das Gefrierverhalten von Wassertropfen auf Flugzeugbauteilen während des Fluges simulieren. Darüber hinaus wird eine neue Methode zur Charakterisierung der Selbstreinigungseffizienz von laserstrukturiertem Aluminium entwickelt und angewendet.
Die texturierten Aluminiumoberflächen erhielten ohne chemische Nachbearbeitung eine wasserabweisende Funktionalität mit einem statischen Wasserkontaktwinkel von bis zu 163° und einem Gleitwinkel von 12°. Diese Funktionalität ermöglichte eine Selbstreinigungseigenschaft, bei der die DLIP- und DLW+DLIP-Strukturen die höchste Effizienz mit einer Restverunreinigung von bis zu 1 % erzielten. Die eisabweisende Charakterisierung bei einer Temperatur von -20°C offenbarte, dass bei allen untersuchten laserstrukturierten Oberflächen die Vereisungszeit von 8 μl Wassertropfen bis um das Dreifache anstieg, im Vergleich zur unstrukturierten Referenz. Darüber hinaus konnte demonstriert werden, dass optimierte Oberflächentexturen zu einer Reduzierung der Eis- Adhäsionskraft um bis zu 90 % führten.:Selbstständigkeitserklärung
Kurzfassung
Abstract
Acknowledgements
Table of content
List of abbreviations and symbols
1 Motivation
2 Theoretical principles and definitions
3 State of the art
4 Materials and methods
5 Results and discussion
6 Conclusions
7 Outlook
Literature
Curriculum vitae of the author
List of publications
|
12 |
Out-of-Plane Mirrors for Single-Mode Polymeric RDL using Direct Laser WritingMistry, Akash, Weyers, David, Nieweglowski, Krzysztof, Bock, Karlheinz 14 November 2023 (has links)
The growing demand for the Internet of Things (IoT) and Artificial Intelligence (AI) need high-speed commu-nication within short-range distances. In the Back-End-Of-Line (BEOL), Single-Mode Waveguide (SMW) with micro-mirror shows the promising application as an Optical Redistribution Layer (O-RDL) connecting photonic-chip at the interposer-level. The presented study shows the potential application of the 2-Photon-Polymerization (2PP) process for fabrication of out-of-plane coupling elements (micro-mirror) for SMW using low-loss Ormocer® hybrid polymers. This fabricated micro-mirror uses as a coupling element to connect the light from RDL to chips or for inter-layer connections at Interposer level. To evaluate the processing time, structural quality, and resolution of the printed micro-mirror, two types of lenses (63x and 25x) and Ormocer® polymers (OrmoComp and OrmoCore) were used. The optimization of the process flow for the micro-mirrors for SMW applications will be described in detail.
|
13 |
Spreading Behavior of Oil on Hierarchical Microstructured PET Surfaces Fabricated Using Hot-Embossing Combined with Laser-Based MethodsBouchard, Felix, Soldera, Marcos, Lasagni, Andrés Fabián 06 November 2024 (has links)
In this study, the wetting behavior of microstructured polyethylene terephthalate (PET) foils for polar and nonpolar liquids produced by plate-to-plate hot embossing is investigated. For the embossing step, stainless steel plates are used as stamps, which are microstructured with single-scaled and hierarchical textures using direct laser writing and two-beam direct laser interference patterning. The imprinted microstructures, containing pillar- and line-like textures, show increased water contact angles combined with a superoleophilic behavior. Time-resolved measurements reveal that oil droplets spread rapidly on the hierarchical textures with velocities of up to 1.4 mm2 s−1. This functionalization of PET foils creates new opportunities for a wide range of industrial applications, such as the use of oil-based instead of solvent-based paints, an improved distribution of lubricants in mechanical components or for oil–water separation in maritime surroundings.
|
14 |
Hybrid lithography approach for single mode polymeric waveguides and out-of-plane coupling mirrorsWeyers, David, Mistry, Akash, Nieweglowski, Krzysztof, Bock, Karlheinz 14 November 2023 (has links)
This paper describes technology and process development for a hybrid lithography approach pairing UV-lithography for planar single mode waveguides with 2-photon-polymerization direct-laser-writing for out-of-plane coupling mirrors. Improvements to multi-layer direct patterning of OrmoCore/-Clad material system using UV-lithography are presented. Near square core cross sections are achieved. Minimum alignment accuracy at ≈ 3 μm is observed. Cut-back measurement on single mode waveguides shows attenuation of 0.64 dB cm −1 and 1.5 dB cm −1 at 1310 nm and 1550 nm respectively. Up to 2.5-times increase of shear-strength after thermal exposure up to 300 ◦ C is found using shear tests and compared for various surface treatments. Mechanical compatibility to reflow soldering is derived. An extensive study on the pattering of ORMOCER® using 2-photon-polymerization is performed. Flat 45 ◦ -micro mirrors with sub-10 μm dimensions are 3D-printed both in OrmoCore and OrmoComp. Outlook to further research on hybrid lithography integration approach is given.
|
15 |
Advances in UV-lithographic patterning of multi-layer waveguide stack for single mode polymeric RDLWeyers, David, Nieweglowski, Krzysztof, Bock, Karlheinz 14 November 2023 (has links)
This paper describes design and advances in process development for UV-lithography of planar single mode waveguides with openings for out-of-plane coupling µ-mirrors. Improvements to multi-layer direct patterning of OrmoCore/-Clad material system using UV-lithography are presented. Near square core cross sections are achieved. However, non uniformity across 4” wafer is shown due to varying proximity and UV-intensity. Openings in full stack with steep sidewalls without residual layer are patterned. Reduction in stack thickness for very small exposure doses due to inhibition even under inert atmosphere is shown. 45° -µ-mirrors are integrated in these openings to manufacture a U-link via a single mode waveguide and two adjacent micro-mirrors. Optical characterization of U-link demonstrates the feasibility of hybrid lithography approach. However, non-uniformity of core cross-section leads to cross coupling of planar waveguides. Outlook to further research on UV-lithography of multi-layer waveguide stack and alignment with µ-mirror printing is given.
|
16 |
PMMA Optical Diffusers with Hierarchical Surface Structures Imprinted by Hot Embossing of Laser-Textured Stainless SteelBouchard, Felix, Soldera, Marcos, Lasagni, Andrés Fabián 22 February 2024 (has links)
Increasingly compact and powerful light emitting diodes require the development of efficient optical diffusers to manage their lighting capability according to the required application. In this study, a cost-effective strategy is demonstrated for fabricating micro-structured polymethylmethacrylate (PMMA) diffusers for white light sources. By combining different laserbased processes, namely direct laser engraving (DLE), direct laser writing (DLW), and direct laser interference patterning (DLIP), periodic patterns are fabricated in stainless steel surfaces with line- and dot-like geometries with feature sizes ranging from 1.7 to 900 μm. The fabricated hierarchical geometries are transferred to PMMA surfaces by plate-to-plate hot embossing. The relationship between the surface topography and the white light scattering behavior is investigated by confocal and scanning electron microscopy combined with photospectroscopy and image processing of photographs. The triple-scaled hierarchical structures can increase the haze up to 76% in the visible spectrum, while keeping the total transmittance over 90%, as the flat surface.
|
17 |
Fabrication of Water- and Ice-Repellent Surfaces on Additive-Manufactured Components Using Laser-Based Microstructuring MethodsKuisat, Florian, Ränke, Fabian, Baumann, Robert, Lasagni, Fernando, Lasagni, Andrés Fabián 30 May 2024 (has links)
Laser patterning techniques have shown in the last decades to be capable of producing functional surfaces on a large variety of materials. A particular challenge for these techniques is the treatment of additively manufactured parts with high roughness levels. The presented study reports on the surface modification of additive-manufactured components of Ti64 and Al–Mg–Sc (Scalmalloy), with the aim of implementing water- and ice-repellent properties. Different laser-based microstructuring techniques, using nanosecond and picosecond pulses, are combined to create multiscale textures with feature sizes between ≈800 nm and 21 μm. The wettability could be set to static water contact angles between 141° and 153° for Ti64 and Al–Mg–Sc, respectively. In addition, surface free energy is analyzed for different surface conditions.
|
18 |
Hybrid lithography fabrication of single mode optics for signal redistribution and couplingWeyers, David, Nieweglowski, Krzysztof, Bock, Karlheinz 10 May 2024 (has links)
This paper describes advances in hybrid-lithography process, combining UV-lithography for planar, single mode redistribution layer (RDL) and 2-photon-polymerization direct-laser-writing (2PP-DLW) for micro-mirrors inside RDL-opening. Improvements to multi-layer direct patterning of OrmoCore/-Clad material system using UV-lithography and need for broadband UV-LED source are presented. Near square core cross sections and smooth sidewalls are achieved. Openings in full stack with steep sidewalls without residual layer are patterned. To optimize 2PP-DLW-process processing window for both OrmoComp and IP-DIP is thoroughly characterized. Roughness measurements prove feasibility even of coarsely printed structure as reflective μ-mirror for 1550 nm wavelength. Finally these results are applied to periscope probe for wafer-level-testing of edge emitting lasers and proof of concept is shown. Outlook to further research on UV-lithography of multi-layer waveguide stack and alignment with μ-mirror printing is given.
|
19 |
Etude ultra-sensible en phase de nano-structures par interferométrie optique à balayage en champ proche / A study on ultra-sensitive phase in nano-structures by near-field scanning optical interferometryMok, Jinmyoung 26 March 2015 (has links)
La construction d’un NSOM, dans ce manuscrit de thèse, est décrite en détail. Lacombinaison du système NSOM construit avec un interféromètre est proposée afin d’accéderà des mesures de phase, à la fois de ultra-haute sensibilité mais également de très granderésolution spatiale. Le nom de l’instrument développé est un interferomètre optique àbalayage en champ proche (NSOI, pour l’acronyme en anglais). Le principe est basé surl’utilisation d’un diapason accordable en cristal de quartz, sur lequel se trouve une pointe,afin de sonder le matériau étudié. La mesure de la force de cisaillement de la pointe sondeau voisinage de la surface permet d’assurer la régulation et la stabilité de la distance depositionnement de la pointe par rapport à la surface considérée. Le dispositif est construit encombinant différents éléments électroniques pilotés par un logiciel développé en langageLab-VIEW. Le bruit de la mesure en NSOI est supprimé par un calcul simple basé sur lathéorie de l’optique ondulatoire et des interférences associées. Le système permet deréaliser des mesures optiques en champ proche ainsi que la détermination en hauterésolution de la phase du champ optique. L’échantillon SNG01 (l’un des réseaux utilisés pourcaractériser notre microscope à balayage en champ proche), ainsi que des disques optiques(CD, DVD and disques blu-ray) ont été utilisés pour tester la faisabilité et les performancesde notre système.Dans ce manuscrit de thèse, le graphène et les monocouches de MoS2 sont étudiés. Nous montrons qu’une épaisseur à l’échelle atomique peut être résolue par notresystème NSOI, avec l’utilisation de l’algorithme de suppression du bruit de mesure. Lesjoints de grain du graphène sont observés à grande échelle, via la technique d’imagerie parcollection en champ proche et par la réalisation de cartographies de phase. En particulier,les tensions internes à une couche de graphène sont observées, uniquement dans le casd’une imagerie de phase. / In this thesis, near-field scanning optical interferometry (NSOI), which combinesNSOM with interferometer, is proposed for the phase measurement. The shear-forcedetection scheme is applied for distance regulation. The hardware of the systemis constructed by combining various electronic devices, and the operating softwareis coded by LabVIEW. Unwanted background signal is removed by simple calculationbased on interference theory. By using this, the near-field optical measurementand the ultra-sensitive phase investigation of nano-materials are performed. 2D materialssuch as graphene and monolayer MoS2 are investigated. It is shown thatatomic-scale thickness can be resolved by the NSOI. Especially, the grain boundariesof graphene and the seed of MoS2 can be found by phase detection. In addition,direct laser writing (DLW) on silver-containing glass is observed by using NSOM,and NSOI. For the first time, the writing threshold is correlatively observed in thefluorescence imaging and the near-field phase image.
|
Page generated in 0.0883 seconds