• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Micromechanical models of network materials presenting internal length scales : applications to trabecular bone under stable and evolutive conditions / Modèles micromécaniques de milieux architecturés présentant des longueurs internes : applications à l'os trabéculaire en conditions stables et évolutives

Goda, Ibrahim 28 May 2015 (has links)
Des méthodes micromécaniques spécifiques ont été développées pour la détermination du comportement effectif de matériaux cellulaires dotés d’une architecture discrète à l’échelle microscopique. La méthode d’homogénéisation discrète a été appliquée à des structures tissées monocouches ainsi qu’à l’os trabéculaire. La topologie discrète initiale de ces milieux est remplacée à l’échelle mésoscopique par un milieu effectif anisotrope micropolaire, qui rend compte des effets d’échelles observés. Ces méthodes d’homogénéisation permettent d’accéder à des propriétés classiques et non classiques dont la mesure expérimentale est souvent difficile. Des modèles 3D ont été développé afin de décrire la rupture fragile et ductile de l’os trabéculaire, incorporant des effets de taille des surfaces d’écoulement plastique. Nous avons construit par des analyses éléments finis de la microstructure de l’os trabéculaire un milieu de substitution 3D homogène, orthotrope de type couple de contraintes, sur la base d’une équivalence en énergie. Les tissus osseux ont la capacité d’adapter leur densité locale et leur taille et forme aux stimuli mécaniques. Nous avons développé des modèles de remodelage interne et externe dans le cadre de la thermodynamique des processus irréversibles, aux échelles cellulaire et macroscopique. Finalement, le remodelage interne anisotrope a été couplé à l’endommagement de fatigue, dans le cadre de la théorie continue de l’endommagement / A methodology based on micromechanics has been developed to determine the effective behavior of network materials endowed with a discrete architecture at the microscopic level. It relies on the discrete homogenization method, which has been applied to textile monolayers and trabecular bones. The initially discrete topology of the considered network materials results after homogenization at the mesoscopic level in anisotropic micropolar effective continuum, which proves able to capture the observed internal scale effects. Such micromechanical methods are useful to remedy the difficulty to measure the effective mechanical properties at the intermediate mesoscopic level scale. The bending and torsion responses of vertebral trabecular bone beam specimens are formulated in both static and dynamic situations, based on the Cosserat theory. 3D models have been developed for describing the multiaxial yield and brittle fracture behavior of trabecular bone, including the analysis of size-dependent non-classical plastic yield. We have constructed by FE analyses a homogeneous, orthotropic couple-stress continuum model as a substitute of the 3D periodic heterogeneous cellular solid model of vertebral trabecular bone, based on the equivalent strain energy approach. Bone tissues are able to adapt their local density and load bearing capacities as well as their size and shape to mechanical stimuli. We have developed models for combined internal and external bone remodeling in the framework of the thermodynamics of irreversible processes, at both the cellular and macroscopic levels. We lastly combined anisotropic internal remodeling with fatigue continuum damage
2

Modèles de comportement non linéaire des matériaux architecturés par des méthodes d'homogénéisation discrètes en grandes déformations. Application à des biomembranes et des textiles / Nonlinear constitutive models for lattice materials by discrete homogenization methods at large strains. Application to biomembranes and textiles

ElNady, Khaled 18 February 2015 (has links)
Ce travail porte sur le développement de modèles micromécaniques pour le calcul de la réponse homogénéisée de matériaux architecturés, en particulier des matériaux se présentant sous forme de treillis répétitifs. Les matériaux architecturés et micro-architecturés couvrent un domaine très large de de propriétés mécaniques, selon la connectivité nodale, la disposition géométrique des éléments structuraux, leurs propriétés mécaniques, et l'existence d'une possible hiérarchie structurale. L'objectif principal de la thèse est la prise en compte des nonlinéarités géométriques résultant des évolutions importantes de la géométrie initiale du treillis, causée par une rigidité de flexion des éléments structuraux faible en regard de leur rigidité en extension. La méthode dite d'homogénéisation discrète est développée pour prendre en compte les non linéarités géométriques pour des treillis quais périodiques; des schémas incrémentaux sont construits qui reposent sur la résolution incrémentale et séquentielle des problèmes de localisation - homogénéisation posés sur une cellule de base identifiée, soumise à un chargement contrôlé en déformation. Le milieu continu effectif obtenu est en général un milieu micropolaire anisotrope, dont les propriétés effectives reflètent la disposition des éléments structuraux et leurs propriétés mécaniques. La réponse non affine des treillis conduit à des effets de taille qui sont pris en compte soit par un enrichissement de la cinématique par des variables de microrotation ou par la prise en compte des seconds gradients du déplacement. La construction de milieux effectifs du second gradient est faite dans un formalisme de petites perturbations. Il est montré que ces deux types de milieu effectif sont complémentaires en raison de l'analogie existant lors de la construction théorique des réponses homogénéisées, et par le fait qu'ils fournissent des longueurs internes en extension, flexion et torsion. Des applications à des structures tissées et des membranes biologiques décrites comme des réseaux de filaments quais-périodiques ont été faites. Les réponses homogénéisées obtenues sont validées par des comparaisons avec des simulations par éléments finis réalisées sur un volume élémentaire représentatif de la structure. Les schémas d'homogénéisation ont été implémentés dans un code de calcul dédié, alimenté par un fichier de données d'entrée de la géométrie du treillis et de ses propriétés mécaniques. Les modèles micromécaniques développés laissent envisager du fait de leur caractère prédictif la conception de nouveaux matériaux architecturés permettant d'élargir les frontières de l'espace 'matériaux-propriétés' / The present thesis deals with the development of micromechanical schemes for the computation of the homogenized response of architectured materials, focusing on periodical lattice materials. Architectured and micro-architectured materials cover a wide range of mechanical properties according to the nodal connectivity, geometrical arrangement of the structural elements, their moduli, and a possible structural hierarchy. The principal objective of the thesis is the consideration of geometrical nonlinearities accounting for the large changes of the initial lattice geometry, due to the small bending stiffness of the structural elements, in comparison to their tensile rigidity. The so-called discrete homogenization method is extended to the geometrically nonlinear setting for periodical lattices; incremental schemes are constructed based on a staggered localization-homogenization computation of the lattice response over a repetitive unit cell submitted to a controlled deformation loading. The obtained effective medium is a micropolar anisotropic continuum, the effective properties of which accounting for the geometrical arrangement of the structural elements within the lattice and their mechanical properties. The non affine response of the lattice leads to possible size effects which can be captured by an enrichment of the classical Cauchy continuum either by adding rotational degrees of freedom as for the micropolar effective continuum, or by considering second order gradients of the displacement field. Both strategies are followed in this work, the construction of second order grade continua by discrete homogenization being done in a small perturbations framework. We show that both strategies for the enrichment of the effective continuum are complementary due to the existing analogy in the construction of the micropolar and second order grade continua by homogenization. The combination of both schemes further delivers tension, bending and torsion internal lengths, which reflect the lattice topology and the mechanical properties of its structural elements. Applications to textiles and biological membranes described as quasi periodical networks of filaments are considered. The computed effective response is validated by comparison with FE simulations performed over a representative unit cell of the lattice. The homogenization schemes have been implemented in a dedicated code written in combined symbolic and numerical language, and using as an input the lattice geometry and microstructural mechanical properties. The developed predictive micromechanical schemes offer a design tool to conceive new architectured materials to expand the boundaries of the 'material-property' space
3

Characterisation of the mechanical behaviour of networks and woven fabrics with a discrete homogenization model / Caractérisation du comportement mécanique des réseaux et des tissus avec un modèle d'homogénéisation discret

Gazzo, Salvatore 10 June 2019 (has links)
Au cours des dernières décennies, le développement de nouveaux matériaux a progressé pour les applications liées à la mécanique. De nouvelles générations de composites ont été développées, qui peut offrir des avantages par rapport aux tapis unidirectionnels renforcés de fibres couramment utilisés les matériaux prennent alors le nom de woven fabrics. Le comportement de ce matériau est fortement influencé par la micro-structure du matériau. Dans la thèse, les modèles mécaniques et les schémas numériques capables de modéliser les comportement des tissus et des matériaux de réseau généraux ont été développés. Le modèle prend en compte la micro-structure au moyen d'une technique d'homogénéisation. Les fibres dans le réseau ont été traités comme des micro-poutres, ayant une rigidité à la fois en extension et en flexion, avec différents types de connexions. La procédure développée a été appliquée pour obtenir les modèles mécaniques homogénéisés pour certains types de réseaux de fibres biaxiaux et quadriaxiaux, simulant soit des réseaux de fibres (en ce cas a été supposé parmi les fibres) ou des tissus avec une interaction négligeable entre les faisceaux de fibres et en empêchant tout glissement relatif (dans ce cas, les connexions ont été simulés au moyen de pivots). Différentes géométries ont été analysées, y compris la cas dans lesquels les fibres ne sont pas orthogonales. On obtient généralement un premier milieu à gradient mais, dans certains cas, la procédure d'homogénéisation lui-même indique qu'un continuum d'ordre supérieur est mieux adapté pour représenter la déformation de la micro-structure. Des résultats spéciaux ont été obtenus dans le cas de fibres reliées par pivots. Dans ce cas, un matériau orthotrope à module de cisaillement nul a été obtenu. Un tel matériau a un tenseur constitutif elliptique, il peut donc conduire à des concentrations de contrainte. Cependant, il a été montré que certaines considérations sur le comportement physique de tels réseaux indiqué que les termes d'ordre supérieur inclus dans l'expansion des forces internes et des déformations, de sorte qu'un matériau de gradient de déformation a été obtenu. Les résultats obtenus peuvent être utilisés pour la conception de matériaux spécifiques nécessitant des propriétés. Bien que le modèle de référence soit un matériau de réseau, les résultats obtenus peuvent être appliqué à d'autres types similaires de microstructures, comme des matériaux pantographiques, des micro-dispositifs composé de micro-poutres, etc. Ils étaient limités à la gamme d'élasticité linéaire, qui est petite déformation et comportement élastique linéaire. Ensuite, les simulations numériques ont été axées sur les tests d'extension et les tests de biais. Le obtenu configurations déformées sont conformes aux tests expérimentaux de la littérature, tant pour tissus équilibrés et non équilibrés. De plus, une comparaison entre les premier et deuxième gradients des prédictions numériques ont été effectuées. Il a été observé que les prédictions de deuxième gradient mieux simuler les preuves expérimentales. / In the past decades there has been an impressive progress in the development of new materials for mechanical related applications. New generations of composites have been developed, that can offer advantages over the unidirectional fibre-reinforced mats commonly used then materials take the name of woven fabrics. The behaviour of this material is strongly influenced by the micro-structure of the material. In the thesis mechanical models and a numerical scheme able to model the mechanical behaviour of woven fabrics and general network materials have been developed. The model takes in to account the micro-structure by means of a homogenization technique. The fibres in the network have been treated like microbeams, having both extensional and bending stiffness, with different types of connection, according to the pattern and detail of the network. The developed procedure was applied for obtaining the homogenized mechanical models for some types of biaxial and quadriaxial networks of fibres, simulating either fibre nets (in this case rigid connection were assumed among the fibres) or tissues with negligible interaction between the fibre bundles, and with relative sliding prevented (in this case the connections were simulated by means of pivots). Different geometries were analysed, including the cases in which the fibres are not orthogonal. A first gradient medium is usually obtained but, in some cases, the homogenization procedure itself indicates that a higher order continuum is better fit to represent the deformation of the micro-structure. Special results were obtained for the case of fibres connected by pivots. In this cases an orthotropic material with zero shear modulus was obtained. Such a material has a not elliptic constitutive tensor, thus it can lead to strain concentrations. However, it was shown that some considerations about the physical behaviour of such networks indicated that higher order terms had to be included in the expansion of the internal forces and deformations, so that a strain gradient material was obtained. The results obtained can be used for the design of specific materials requiring ad-hoc properties. Although the reference model is a network material, the results obtained can be applied to other similar kinds of microstructures, like pantographic materials, micro devices composed by microbeams etc. They have been limited at the range of linear elasticity, that is small deformation and linear elastic behaviour. Then, numerical simulations were focused on extension tests and bias tests. The obtained deformed configurations are consistent with the literature experimental tests, both for balanced and unbalanced tissues. Moreover, a comparison between first and second gradient numerical predictions was performed. It was observed that second gradient predictions better simulate the experimental evidences.

Page generated in 0.1347 seconds