• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 40
  • 9
  • 5
  • 4
  • 1
  • Tagged with
  • 142
  • 142
  • 57
  • 39
  • 26
  • 24
  • 21
  • 17
  • 17
  • 16
  • 15
  • 15
  • 13
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Uso do silício na micropropagação visando o manejo da murcha-de-fusário e do moko da bananeira

ROLLEMBERG, Christtianno de Lima 30 April 2013 (has links)
Submitted by (lucia.rodrigues@ufrpe.br) on 2017-02-21T13:35:42Z No. of bitstreams: 1 Christtianno de Lima Rollemberg.pdf: 2445206 bytes, checksum: 4da0aaed00880d13a23b17cdb6cae239 (MD5) / Made available in DSpace on 2017-02-21T13:35:42Z (GMT). No. of bitstreams: 1 Christtianno de Lima Rollemberg.pdf: 2445206 bytes, checksum: 4da0aaed00880d13a23b17cdb6cae239 (MD5) Previous issue date: 2013-04-30 / This study evaluated the use of silicon (Si) in micropropagation of banana 'Silk' and 'Pacovan Ken' aiming to reduce the severity of fusarium wilt caused by Fusarium oxysporum f. sp. cubense and moko disease caused by Ralstonia solanacearum race 2. The banana plantlets were produced in vitro by adding calcium silicate and potassium silicate (0, 0.25, 0.5, 0.75 and 1 g L-1) to MS medium in the phases of multiplication and rooting. After in vitro culture, the plants were transferred to plastic tubes containing substrate plus the same sources of Si, and maintained in a greenhouse for 45 days, when they were inoculated with the pathogens. With respect to fusarium wilt in cultivars Silk and Pacovan Ken, the elevation of Si increased the incubation period (IP) and reduced the disease index (DI) and area under the disease progress curve (AUDPC). In cultivar Silk but not in Pacovan Ken calcium silicate was significantly more effective than potassium silicate. In shoots and roots of both cultivars in both sources, before and after acclimatization Si concentration was greater at a dose of 1.0 g L-1 compared to the control without Si. Before acclimatization, calcium silicate provided higher Si concentration in the shoots than potassium silicate. The opposite happened with the Si concentration in the roots. After acclimatization, there was no difference between the calcium silicate and potassium silicate, for both cultivars. In general, for both cultivars and sources of Si there were positive correlations with the concentration of Si and IP, and negative correlations with DI and AUDPC. Before and after acclimatization, the anatomical variable of roots: thickness of the root epidermis, cortex, endodermis and central cylinder of banana 'Silk' and 'Ken Pacovan' were influenced by Si sources. Calcium silicate was more efficient in increasing the thickness of the root epidermis, cortex and central cylinder, while potassium silicate was more efficient in thickening of the endodermis. In general, there were positive correlations among anatomical variable of roots with PI and negative correlations with DI and AUDPC, except for potassium silicate in cultivar Silk. The research conducted with moko disease showed that increase of Si in Silk and Pacovan Ken cultivars caused increase in IP and decreases the DI and AUDPC. At the dosage of 1.0 g L-1 AUCPD was reduced by 27.3%. In cultivar Silk, calcium silicate was more effective than potassium silicate (P≤0.05), while in „Pacovan Ken‟ there was no difference. In both cultivars, plants treated with Si showed, in general, concentrations of chlorophylls a, b and total higher than plants Si- up to six days after inoculation, which may have influenced the disease IP. In general, both the enzymes related to oxidative stress (CAT, SOD and APX), as the plant defense (POX, PPO, CHI and GLU), had increased its activities in plants treated with Si, especially those with calcium silicate, indicating a possible role in reducing the severity of the disease. The supply of Si in micropropagation of banana 'Silk' and 'Pacovan Ken' promoted reduction of Fusarium wilt and moko disease, and therefore can be used as a new technology in the management of these diseases. / Este estudo avaliou o uso do silício (Si) na micropropagação de bananeira „Maçã‟ e „Pacovan Ken‟ visando a redução da severidade da murcha-de-fusário, causada pelo Fusarium oxysporum f. sp. cubense e do moko da bananeira causado por Ralstonia solanacearum raça 2. As mudas de bananeira foram produzidas in vitro com adição de silicato de cálcio e silicato de potássio (0; 0,25; 0,5; 0,75 e 1 g L-1) ao meio de cultivo MS nas fases de multiplicação e enraizamento. Após o cultivo in vitro, as plantas foram transferidas para tubetes contendo substrato acrescido das mesmas fontes de Si, e mantidas em casa de vegetação por 45 dias, quando foram inoculadas com os patógenos. Com relação à murcha-de-fusário, nas cultivares Maçã e Pacovan Ken, a elevação das doses de Si aumentou o período de incubação (PI) e reduziu o índice de doença (IDO) e a área abaixo da curva de progresso da doença (AACPD). Em „Maçã‟ o silicato de cálcio foi significativamente mais eficiente que o silicato de potássio, o que não ocorreu na „Pacovan Ken‟. A concentração de Si na parte aérea e raízes das cultivares, em ambas as fontes, antes e após a aclimatização foi maior na dose de 1,0 g L-1 em relação à testemunha sem Si. Antes da aclimatização, o silicato de cálcio proporcionou maior concentração de Si na parte aérea que o silicato de potássio. O contrário aconteceu com a concentração de Si nas raízes. Após aclimatização, não houve diferença entre o silicato de cálcio e o silicato de potássio, para as duas cultivares. Em geral, para ambas as cultivares e fontes de Si foram observadas correlações positivas da concentração de Si com PI e correlações negativas com IDO e AACPD. Antes e após a aclimatização das plantas, as espessuras da epiderme radicular, córtex, endoderme e cilindro central das bananeiras „Maçã‟ e „Pacovan Ken‟ foram influenciadas pelas fontes de Si. O silicato de cálcio foi mais eficiente no aumento da espessura da epiderme radicular, córtex e cilindro central, enquanto o silicato de potássio foi mais eficiente no aumento da espessura da endoderme. Em geral, foram observadas correlações positivas das variáveis anatômicas das raízes com PI e correlações negativas com IDO e AACPD, exceto para silicato de potássio em bananeira „Maçã‟. Na pesquisa desenvolvida com o moko da bananeira, a elevação das doses de Si nas cultivares Maçã e Pacovan Ken causou aumento no PI e reduções do IDO e AACPD. Na dosagem de 1,0 g L-1, a AACPD foi reduzida em até 27,3%. Em bananeira „Maçã‟ o silicato de cálcio foi mais eficiente que o silicato de potássio (P≤0,05), enquanto na „Pacovan Ken‟ não houve diferença. Nas duas cultivares, plantas tratadas com Si apresentaram, de maneira geral, concentrações de clorofilas a, b e total maiores que as plantas Si- até os seis dias após inoculação, o que pode ter influenciado o PI da doença. Em geral, tanto as enzimas relacionadas ao estresse oxidativo (CAT, SOD e APX), quanto as de defesa da planta (POX, PFO, GLU e QUI), tiveram suas atividades aumentadas nos tratamentos com silício, especialmente naqueles com silicato de cálcio, indicando uma possível participação na redução da severidade da doença. O fornecimento de Si na micropropagação de bananeiras „Maçã‟ e „Pacovan Ken‟ promoveu redução da murcha-de-fusário e moko da bananeira, podendo ser utilizado como uma nova tecnologia no manejo dessas doenças.
42

Unravelling the roles of S-nitrosothiols in plant biology

Sorhagen, Kirsti January 2011 (has links)
No description available.
43

Identification And Cloning Of Genes Induced And / Or Repressed Upon Treatments Of Wheat Plants (avocet S) With Bth, Baba And Trichoderma Harzianum Raifi Krl-ag2

Al-asbahi, Adnan Ali 01 October 2006 (has links) (PDF)
One of the major problems concerning the production of food crops is the controlling of plant diseases to maintain the high quality and yield. Wheat diseases are caused by parasitic bacteria, fungi and viruses that are a major hazard in wheat production. Therefore, understanding of any resistance mechanism is prerequisite for the successful utilization of wheat crop species in modern agriculture. The phenomenon of induced resistance by fungi, bacteria, microbial elicitors and chemicals has been investigated widely and resulted in many discoveries that conclude a general realization that the disease resistance signaling pathway in plants shares a number of common elements with those leading to innate immunity but a few of them have been characterized at the molecular level yet. Therefore our goal in this study is to identify genes activated or repressed after treatment of wheat plants with biological elicitor fungus, Trichoderma harzianum, and chemical inducers, benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester (BTH) and &szlig / -aminobutyric acid (BABA). mRNA differential display technique, which is a powerful tool to identify those genes that are differentially expressed between the two cell types has been extensively used in this study. The variety &#039 / Avocet S&#039 / is used to identify putative genes activated or repressed after treatment of wheat plants with biological elicitor fungus, Trichoderma harzianum, and chemical inducers, BTH and BABA comparing to untreated &#039 / Avocet S&#039 / wheat plants. The differentially expressed cDNA bands were cloned and sequenced. Nucleotide sequences of differentially expressed cDNA bands were searched in the Genbank. Sequence alignments between the fragments that represent a certain gene were also searched in ClustalX-1.81 computer programs. The sequences of the differentially expressed fragments were also confirmed by real time PCR that verify the gene expression differences observed between the biologically or chemically treated and untreated plants as a result of defense induction. The confirmed genes were found to be involved directly or indirectly in the induced disease resistance. These genes are important in terms of understanding the mechanism of systemic acquired resistance (SAR) signalling defense and helpful in producing transgenic wheat.
44

Experimental Schistosoma bovis infections in goats : studies on the host-parasite relationship with special reference to immunoregulatory effects and immunopathology /

Sörén, Kaisa, January 2009 (has links) (PDF)
Diss. (sammanfattning) Uppsala : Sveriges lantbruksuniversitet, 2009. / Härtill 3 uppsatser.
45

Engineering Allium White Rot Disease Resistance in Allium Species and Tobacco Model Species

Glue, Joshua Barnaby January 2009 (has links)
Allium white rot (AWR) is a soilborne disease that seriously damages commercial cultivation of onion (Allium cepa) and garlic (Allium sativum) crops. The disease has been found everywhere onions are cultivated and at present no system of control has been found that fully prevents the occurrence of the disease. The fungus responsible for the disease, Sclerotium cepivorum, uses oxalic acid to kill Allium bulb and root tissue in growing onion and garlic plants. Research suggests recombinant oxalate oxidase and oxalate decarboxylase enzymes may be able to degrade this acid and confer resistance against pathogens that rely on it, such as Sm. cepivorum or Sclerotinia sclerotiorum. To test the efficacy of these enzymes against white rot pathogens, three transgenes for wheat oxalate oxidase, barley oxalate oxidase and Flammulina oxalate decarboxylase were transformed into onions and garlic by Agrobacterium-mediated transformation. Allium species are highly recalcitrant to transformation, so these three transgenes were also transformed into tobacco to provide fast-recovering, easy to test transformants to assess the efficacy of the transgenes. Transformed garlic and tobacco lines were analysed to assess the integration and expression of the transgenes, then challenged with Sm. cepivorum or Sa. sclerotiorum, respectively, to assess the bioactivity of recombinant wheat oxalate oxidase, barley oxalate oxidase, and Flammulina oxalate decarboxylase against oxalic acid-dependent pathogens. Results show that one line of tobacco expressing the Flammulina oxalate decarboxylase enzyme was found to be consistently resistant to Sclerotinia sclerotiorum. Garlic lines transformed with this transgene failed to display stable transgene expression or disease resistance, possibly due to silencing of the transgene in recovered transformant tissue.
46

TOWARDS REDUCING FUNGICIDE USE IN THE CONTROL OF DOLLAR SPOT (SCLEROTINIA HOMOEOCARPA F.T. BENNETT) DISEASE ON CREEPING BENTGRASS (AGROSTIS STOLONIFERA L.)

Cropper, Kenneth Lee 01 January 2009 (has links)
Creeping bentgrass (Agrostis stolonifera L.) is commonly used on golf course greens and fairways in cool-humid regions but is plagued by numerous fungal diseases, one of which is dollar spot disease (Sclerotinia homoeocarpa F. T. Bennett). Dollar spot occurs frequently throughout the growing season requiring biweekly fungicide applications for complete control. The objective of this study was to investigate methods of reducing the number of fungicide applications needed to maintain dollar spot at acceptable levels through dew removal and potential mechanisms of resistance in bentgrass. In the first study, a combination of mowing three times a week and dragging by hose the remaining four days to remove dew was used in an attempt to reduce disease severity. The main effect of this combination treatment was not significant (p>0.05) and did not reduce the number of fungicide applications compared to normal mowing three times a week. However, dollar spot was managed curatively with 20-80% fewer applications compared to a normal preventative fungicide program. In the second experiment, two experimental germplasms with varying disease resistance were tested for the possible production of antifungal compounds known as phytoanticipins. Preliminary results indicate the resistant line may contain compounds not present in the susceptible line.
47

Elucidation Of R Gene Mediated Yellow Rust Disease Resistance Mechanism In Wheat By Dual Bait Yeast Two-hybrid Analysis

Yildirim, Figen 01 August 2005 (has links) (PDF)
Yellow rust, caused by Puccinia striiformis Westend. f. sp. tritici Eriksson is one of the most severe leaf diseases of wheat. Aim of this study is to illuminate the downstream signaling pathways upon incompetible infection of rust pathogen in wheat, thus to understand the genes involved in resistance mechanism. The strategy used is the dual bait yeast two-hybrid analysis which is the most powerful method for in vivo detection of protein-protein interactions. The bait proteins used are / the domains of Yr10 yellow rust resistance gene, Rad6 gene which is considered to have a critical role in R gene mediated signaling pathway, and WR5 gene fragment which is an unknown protein having homology to the WD40 repeat containing protein with apoptosis related activity. Screening of a yeast prey library with these baits revealed proteins having mostly apoptosis related functions (SRP72, POR1, CSE1), translation initiation control in response to stress conditions (Gcn2p, Eap1p), phosphorylation (SKY1) and dephosphorylation activities (GAC1), cell cycle control (FAR1), oxidative stress control (OXR1), protein degradation control (TOM1), protein folding control (CPR7) and ion homeostasis in the cell (POR1, GAC1). The significance of the study can be summarized as i) being the first yeast two hybrid analysis of a wheat R gene, ii) being able to detect interacting partners with anticipated functions, iii) most importantly, initiating further detailed analysis of the key interactors.
48

Engineering Allium White Rot Disease Resistance in Allium Species and Tobacco Model Species

Glue, Joshua Barnaby January 2009 (has links)
Allium white rot (AWR) is a soilborne disease that seriously damages commercial cultivation of onion (Allium cepa) and garlic (Allium sativum) crops. The disease has been found everywhere onions are cultivated and at present no system of control has been found that fully prevents the occurrence of the disease. The fungus responsible for the disease, Sclerotium cepivorum, uses oxalic acid to kill Allium bulb and root tissue in growing onion and garlic plants. Research suggests recombinant oxalate oxidase and oxalate decarboxylase enzymes may be able to degrade this acid and confer resistance against pathogens that rely on it, such as Sm. cepivorum or Sclerotinia sclerotiorum. To test the efficacy of these enzymes against white rot pathogens, three transgenes for wheat oxalate oxidase, barley oxalate oxidase and Flammulina oxalate decarboxylase were transformed into onions and garlic by Agrobacterium-mediated transformation. Allium species are highly recalcitrant to transformation, so these three transgenes were also transformed into tobacco to provide fast-recovering, easy to test transformants to assess the efficacy of the transgenes. Transformed garlic and tobacco lines were analysed to assess the integration and expression of the transgenes, then challenged with Sm. cepivorum or Sa. sclerotiorum, respectively, to assess the bioactivity of recombinant wheat oxalate oxidase, barley oxalate oxidase, and Flammulina oxalate decarboxylase against oxalic acid-dependent pathogens. Results show that one line of tobacco expressing the Flammulina oxalate decarboxylase enzyme was found to be consistently resistant to Sclerotinia sclerotiorum. Garlic lines transformed with this transgene failed to display stable transgene expression or disease resistance, possibly due to silencing of the transgene in recovered transformant tissue.
49

Broadening of mildew resistance in wheat /

Forsström, Per-Olov, January 2002 (has links) (PDF)
Diss. (sammanfattning) Alnarp : Sveriges lantbruksuniv., 2002. / Härtill 4 uppsatser.
50

Molecular mapping of potyvirus resistance genes in diploid potatoes /

Hämäläinen, Jaana. January 1900 (has links) (PDF)
Diss. (sammanfattning) Uppsala : Sveriges lantbruksuniv. / Härtill 3 uppsatser.

Page generated in 0.0775 seconds