• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelo geométrico de ordem k correlacionado / Correlated Geometric Model of Order k

Souza, Roberta de 29 August 2019 (has links)
Neste trabalho propomos a distribuição geométrica de ordem k correlacionada, k ≥ 1, de parâmetros π e ρ π ∈ (0;1), max{-1, -1-π / π } ≤ ρ < 1, como uma extensão da generalização da distribuição geométrica proposta por Philippou e Muwafi (1980) e utilizando as idéias de Kolev, Minkova e Neytchev (2000) para generalizações de distribuições discretas provenientes de sequências de variáveis binárias. Sendo assim, é também uma releitura da distribuição geométrica de ordem k apresentada por Aki e Hirano (1993). Algumas propriedades da distribuição são demonstradas. Modelos de regressão foram desenvolvidos por ambos os métodos de estimação, clássico e bayesiano. Estudos de dados simulados mostram o comportamento das distribuições e algumas propriedades dos estimadores. A principal motivação em propor este modelo, além de contribuir para generalizações de distribuições discretas, é ter uma alternativa ainda mais adequada para análise de dados reais, pois considera-se o efeito da correlação individual existente pelo parâmetro ρ. Os ajustes dos modelos foram avaliados e análise de resíduos e de diagnóstico de influência ou divergência também é apresentada. / In this work we propose the correlated geometric distribution of order k, k ≥ 1, with parameters π e ρ π ∈ (0;1), max{-1, -1-π / π } ≤ ρ < 1, as an extension of the generalized geometric distribution proposed by Philippou e Muwafi (1980) and considering the ideas of Kolev, Minkova e Neytchev (2000) for generalizations of discrete distributions by including an additional parameter ρ. Thus, it is also a re-reading of the geometric distribution of order k by Aki e Hirano (1993). Some properties of the proposed distribution are presented. Regression models are developed using classical and Bayesian estimation methods. Simulated data studies show the behavior of the distributions and some properties of the estimators. The main motivation in this research, besides contribute to generalizations of discrete distributions, is to propose an alternative analysis and even more suitable for real data, since the effect of the individual correlation is taken into account through the existence of the parameter. The fitted models are evaluated and the residual analysis and diagnosis of influence or divergence are also presented.
2

Modelos para dados de sobrevivência na presença de diferentes esquemas de ativação baseados na distribuição geométrica

Roman, Mari 08 April 2013 (has links)
Made available in DSpace on 2016-06-02T20:04:52Z (GMT). No. of bitstreams: 1 5104.pdf: 2493280 bytes, checksum: 296329e73498a367b56e93dcbe6f0aaa (MD5) Previous issue date: 2013-04-08 / Financiadora de Estudos e Projetos / In this thesis new families of survival distributions are proposed. Those distributions are derived by assuming a latent activation structure to explain the occurrence of the event of interest. In general, the competitive causes may have different activation mechanisms. Here we assume three different ones, namely, fisrt, random and last actvation mechanisms. The presence of cure fraction are also addressed in two contexts. The models assumed that the number of causes follows a Geometric distribution and the lifetime for these causes follows an Exponential distribution, and a Gamma Generalized distribution. The properties of the proposed distributions are discussed, including a formal proof of its probability density function and explicit algebraic formulas for its reliability and failure rate functions, moments, order statistics and modal value. Inferetial procedure is based on frequentist and Bayesian perspectives. Moreover, Bayesian case influence diagnostics based in -divergence, with include Kulback Leibler divergence measure as a particular case, are developed. Simulation studies are performed and experimental results are illustrated based in real datasets. / Nesta tese, novas famílias de distribuições são propostas para modelar dados de tempo de vida. Essas distribuições são obtidas assumindo que a ocorrência do evento de interesse é explicada por uma estrutura latente de ativação. Em geral, as causas competitivas podem ter diferentes mecanismos de ativação, consideramos os casos: primeiro, último e aleatório. A presença de fração de curados é considerada nestes contextos. Os modelos assumem que o número de causas de risco tem distribuição de probabilidade Geométrica; e o tempo de ativação desses fatores segue distribuição Exponencial ou Gama Generalizada. Propriedades das distribuições propostas são discutidas, incluindo obtenção da função densidade de probabilidade e fórmulas explícitas da função de risco, momentos, estatística de ordem e valor modal. Outro objetivo deste trabalho é o desenvolvimento de processos inferenciais nas perspectivas clássica e bayesiana. Além disso, as medidas bayesianas de diagnóstico baseadas na divergência, que incluem a divergência de Kulback Leibler como caso particular, são consideradas para detectar observações influentes. Estudos de simulação são realizados e resultados experimentais são obtidos para conjuntos de dados reais.
3

Modelos de sobrevivência com base nas distribuições geométrica e exponencial

Yamachi, Cíntia Yurie 01 February 2013 (has links)
Made available in DSpace on 2016-06-02T20:06:07Z (GMT). No. of bitstreams: 1 4907.pdf: 977659 bytes, checksum: 00900e73e61e1ca614a2419c9ad45d8e (MD5) Previous issue date: 2013-02-01 / Financiadora de Estudos e Projetos / In this dissertation we propose four models to model lifetime data. The fist family of distribution is called Exponentiated Complementary Exponential Geometric distribution (ECEG) and it is obtained by exponentiation of the cumulative distribution of the Complementary Exponential Geometric distribution (CEG) proposed by Louzada et al. (2011) to a new parameter α > 0. The second distribution is used to model lifetime when the population is not homogeneous about the risk of death and it has two subpopulation: one composed by individuals not susceptible by the event and other composed by individuals subjected to the risk. This model, called LECEG, has a long term parameter p related to the proportion of individuals out of risk. The third is the Exponentiated Exponential Geometric (EEG) that uses the same idea of the ECEG, and the fourth is the Exponentiated Complementary Exponential Geometric distribution under N systems (ECEGN) presented in a context of N independent working systems and the fails occurs when some of them fail. / Nesta dissertaç ão são propostos quatro modelos de distribuições de probabilidade para os tempos de vida de indivíduos em uma população. A primeira família de distribuições, a distribuiç ão Geométrica Exponencial Complementar Exponenciada (ECEG) e é obtida via exponenciação da distribuição acumulada da distribuição Geométrica Exponencial Complementar (CEG) proposta por Louzada et al. (2011) a um novo parâmetro α_ > 0. A segunda, é direcionada á modelagem de tempos de vida quando a população não é homogênea quanto ao risco de morte possuindo duas subpopulações: a de indivíduos não suscetíveis ao evento e a de indivíduos sob risco. Esta distribuição, distribuição Geométrica Exponencial Complementar Exponenciada na presença de longa duração (LECEG), possui o parâmetro p de longa duração que indica a proporção de indivíduos fora de risco. A terceira é a distribuição Exponencial Geométrica Exponenciada (EEG) que usa a mesma ideia de criação da ECEG, e a quarta a distribuição Exponencial Geométrica Complementar Exponenciada em N sistemas (ECEGN) que se apresenta num cenário com N sistemas funcionando independentemente e a falha ocorre quando algum sistema falhar.
4

O modelo Burr XII geométrico: propriedades e aplicações / The model Burr XII Geometric: properties and applications

Lanjoni, Beatriz Rezende 25 November 2013 (has links)
No presente trabalho são propostos dois modelos para dados censurados baseados na mistura da distribuição geométrica e na distribuição Burr XII considerando duas ativações latentes, máximo e mínimo. A distribuição Burr XII tem três parâmetros e é uma generalização da distribuição log-logística. Por sua vez a distribuição Burr XII Geométrica tipo I e tipo II tem quatro parâmetros e são generalizações da distribuição Burr XII relacionados as ativações latentes do mínimo e máximo respectivamente. Foram apresentadas algumas propriedades das duas novas distribuições tais como momentos, assimetria, curtose, função geradora de momentos e desvio médio. Além disso, foi intriduzido os modelos de regressão correspondentes, log Burr XII Geométrica tipo I e log Burr XII Geométrica tipo II. Adicionalmente foi desenvolvido um modelo de sobrevivência com fração de cura assumindo que o número de causas competitivas do evento de interesse segue a distribuição geométrica e o tempo do evento segue a distribuição Burr XII. Para todos os modelos desenvolvidos foi utilizado o método da máxima verossimilhança para estimar os parâmetros, que possibilita a construção de intervalos de confiança e testes de hipóteses. Por fim, são apresentadas três aplicações para ilustrar os modelos propostos. / In this paper are proposed two models for censored data based on the mixture of geometric distribution and Burr XII distribution considering two latent activations, maximum and minimum. The Burr XII distribution has three parameters and is a generalization of the log-logistic distribution. On the other hand Burr XII Geometric type I distribution and type II has four parameters and are a generalization of the Burr XII distribution related to minimum and maximum activations respectively. It were presented some properties of the news distributions such as moments, skewness, kurtosis, moment generating function and mean deviation. Furthermore, it was introduced two regression models, the log Burr XII Geometric type I and the log Burr XII Geometric type II. Additionally a new cure rate survival was formulated by assuming that the number of competing causes of the event of interest has the geometric distribution and the time to this event follows Burr XII distribution. For all models was developed the maximum likelihood method to estimate the parameters, which allows the construction of confidence intervals and hypothesis testing. Finally, three applications are presented to illustrate the proposed models.
5

A distribuição log-logística exponenciada geométrica: dupla ativação / The exponentiated log-logistic geometric distribution: dual activation

Mendoza, Natalie Verónika Rondinel 18 September 2012 (has links)
Neste trabalho é proposta uma nova distribuição de quatro parâmetros denominada distribuição log-logística exponenciada geométrica, baseada em um mecanismo de dupla ativação para modelar dados de tempo de vida. Para esta nova distribuição, foi realizado um estudo da função de densidade de probabilidade, da função de distribuição acumulada, da função de sobrevivência e da função de taxa de falha, a qual apresenta formas que podem modelar dados de tempo de vida, tais como: forma crescente, decrescente, unimodal, bimodal e forma de U. Obteve-se expansões da função de densidade, expressões para os momentos de probabilidade ponderada, função geradora de momentos, desvios médios e as curvas de Bonferroni e de Lorenz. Considerando dados censurados, foi utilizado o método de máxima verossimilhança para estimação dos parâmetros. Analogamente também é proposto um modelo de regressão baseado no logaritmo da distribuição log-logística exponenciada geométrica com dupla ativação, que é uma extensão dos modelos de regressão logística exponenciada e logística. Este modelo pode ser usado na análise de dados reais, por fornecer um melhor ajuste que os modelos de regressão particulares, logística exponenciada e logística. Finalmente, são apresentados duas aplicações para ilustrar a utilização da nova distribuição. / In this work, we propose a new distribution with four parameters the so called exponentiated log-logistic geometric distribution based on a double mechanism of activation for modeling lifetime data. For this new distribution, we study the density function, cumulative distribution, survival function and the failure rate function which allows major harzad rates: increasing, decreasing, bathtub, unimodal and bimodal failure rates. We also obtain the density function expansions and the expressions for the probability-weighted moments, moment generating function, mean deviation and Bonferroni and Lorenz curves. Considering censored data, we use the maximum likelihood method for estimating the parameters. Similarly, we also propose the regression model based on the logarithm of the exponentiated log-logistic geometric distribution with double activation, which is an extension of the exponential logistic and logistic regression models. This new model could be widely used in the analysis of real data to provide a better fit than exponetial logistic and logistic regression models. Finally, two applications are presented to illustrate the application of the new distribution.
6

O modelo Burr XII geométrico: propriedades e aplicações / The model Burr XII Geometric: properties and applications

Beatriz Rezende Lanjoni 25 November 2013 (has links)
No presente trabalho são propostos dois modelos para dados censurados baseados na mistura da distribuição geométrica e na distribuição Burr XII considerando duas ativações latentes, máximo e mínimo. A distribuição Burr XII tem três parâmetros e é uma generalização da distribuição log-logística. Por sua vez a distribuição Burr XII Geométrica tipo I e tipo II tem quatro parâmetros e são generalizações da distribuição Burr XII relacionados as ativações latentes do mínimo e máximo respectivamente. Foram apresentadas algumas propriedades das duas novas distribuições tais como momentos, assimetria, curtose, função geradora de momentos e desvio médio. Além disso, foi intriduzido os modelos de regressão correspondentes, log Burr XII Geométrica tipo I e log Burr XII Geométrica tipo II. Adicionalmente foi desenvolvido um modelo de sobrevivência com fração de cura assumindo que o número de causas competitivas do evento de interesse segue a distribuição geométrica e o tempo do evento segue a distribuição Burr XII. Para todos os modelos desenvolvidos foi utilizado o método da máxima verossimilhança para estimar os parâmetros, que possibilita a construção de intervalos de confiança e testes de hipóteses. Por fim, são apresentadas três aplicações para ilustrar os modelos propostos. / In this paper are proposed two models for censored data based on the mixture of geometric distribution and Burr XII distribution considering two latent activations, maximum and minimum. The Burr XII distribution has three parameters and is a generalization of the log-logistic distribution. On the other hand Burr XII Geometric type I distribution and type II has four parameters and are a generalization of the Burr XII distribution related to minimum and maximum activations respectively. It were presented some properties of the news distributions such as moments, skewness, kurtosis, moment generating function and mean deviation. Furthermore, it was introduced two regression models, the log Burr XII Geometric type I and the log Burr XII Geometric type II. Additionally a new cure rate survival was formulated by assuming that the number of competing causes of the event of interest has the geometric distribution and the time to this event follows Burr XII distribution. For all models was developed the maximum likelihood method to estimate the parameters, which allows the construction of confidence intervals and hypothesis testing. Finally, three applications are presented to illustrate the proposed models.
7

A distribuição log-logística exponenciada geométrica: dupla ativação / The exponentiated log-logistic geometric distribution: dual activation

Natalie Verónika Rondinel Mendoza 18 September 2012 (has links)
Neste trabalho é proposta uma nova distribuição de quatro parâmetros denominada distribuição log-logística exponenciada geométrica, baseada em um mecanismo de dupla ativação para modelar dados de tempo de vida. Para esta nova distribuição, foi realizado um estudo da função de densidade de probabilidade, da função de distribuição acumulada, da função de sobrevivência e da função de taxa de falha, a qual apresenta formas que podem modelar dados de tempo de vida, tais como: forma crescente, decrescente, unimodal, bimodal e forma de U. Obteve-se expansões da função de densidade, expressões para os momentos de probabilidade ponderada, função geradora de momentos, desvios médios e as curvas de Bonferroni e de Lorenz. Considerando dados censurados, foi utilizado o método de máxima verossimilhança para estimação dos parâmetros. Analogamente também é proposto um modelo de regressão baseado no logaritmo da distribuição log-logística exponenciada geométrica com dupla ativação, que é uma extensão dos modelos de regressão logística exponenciada e logística. Este modelo pode ser usado na análise de dados reais, por fornecer um melhor ajuste que os modelos de regressão particulares, logística exponenciada e logística. Finalmente, são apresentados duas aplicações para ilustrar a utilização da nova distribuição. / In this work, we propose a new distribution with four parameters the so called exponentiated log-logistic geometric distribution based on a double mechanism of activation for modeling lifetime data. For this new distribution, we study the density function, cumulative distribution, survival function and the failure rate function which allows major harzad rates: increasing, decreasing, bathtub, unimodal and bimodal failure rates. We also obtain the density function expansions and the expressions for the probability-weighted moments, moment generating function, mean deviation and Bonferroni and Lorenz curves. Considering censored data, we use the maximum likelihood method for estimating the parameters. Similarly, we also propose the regression model based on the logarithm of the exponentiated log-logistic geometric distribution with double activation, which is an extension of the exponential logistic and logistic regression models. This new model could be widely used in the analysis of real data to provide a better fit than exponetial logistic and logistic regression models. Finally, two applications are presented to illustrate the application of the new distribution.

Page generated in 0.0762 seconds