• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 21
  • 21
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

O sistema operacional de rede heterogêneo HetNOS / The HetNOS heterogeneous network operating system

Barcellos, Antonio Marinho Pilla January 1993 (has links)
O advento dos computadores pessoais e posteriormente das estações de trabalho, somado ao desenvolvimento de hardware de comunicação eficiente e de baixo custo, levou a popularização das redes locais. Entretanto, o software não presenciou o mesmo desenvolvimento do hardware, especialmente devido a complexidade dos sistemas distribuídos. A heterogeneidade das máquinas, sistemas e redes, inerente aos ambientes computacionais modernos, restringe igualmente a integração e cooperação entre os nodos disponíveis. 0 objetivo do presente trabalho é, a partir da análise dos principais aspectos relacionados à distribuição e à heterogeneidade, desenvolver um sistema operacional de rede heterogêneo. Tal sistema, denominado HetNOS (de Heterogeneous Network Operating System), permite o desenvolvimento e validação de aplicações distribuídas homogêneas e heterogêneas de forma rápida e fácil. Os usuários podem concentrar-se nos aspectos de distribuição dos algoritmos, abstraindo detalhes dos mecanismos de comunicação, pois a programação de aplicações distribuídas é baseada em uma plataforma de interface homogênea, fácil de usar e com independência de localidade. Sendo um sistema operacional de rede, o HetNOS atua sobre o conjunto de sistemas operacionais nativos existentes; o ambiente de trabalho e estendido e não substituído. Não há entidades nem informações centralizadas, e os algoritmos são distribuídos, usualmente resultando maior confiabilidade e desempenho. A topologia do sistema é um anel lógico, esquema justificado pela generalidade de tal configuração e pela simplificação do projeto do núcleo distribuído do HetNOS. O paradigma de comunicação entre módulos e a troca de mensagens, mecanismo implementado sobre a interface de programação em rede sockets. Não há compartilhamento de memória em nenhuma instância, tornando o sistema mais legível, manutenível e portável. A interpelação entre módulos fica restrita à interface de mensagens definidas e aceitas por cada módulo. A arquitetura do HetNOS é estruturada e distribuída, pois o sistema é composto de camadas hierárquicas subdivididas em módulos, estes implementados com processos. O nível 1 corresponde ao conjunto de núcleos de sistemas operacionais nativos suportados, sobre o qual é implementado o núcleo distribuído heterogêneo do HetNOS, a DCL (Distributed Computing Layer). O principal serviço fornecido pela DCL (executada no nível 2), é um subsistema de troca de mensagens canônico e independente de localidade. Processos servidores e de usuários podem utilizar as mais variadas formas de comunicação por mensagens, tal como envio, recepção e propagação de mensagens síncronas, assíncronas, bloqueantes e não bloqueantes. No nível 3 estão os servidores do sistema, que estendem e implementam de forma distribuída a funcionalidade do sistema nativo. O Servidor de Nomes é o repositório global de dados, servindo a processos do sistema e de usuários. O Servidor de Autorização implementa o esquema de controle no acesso a recursos do sistema. O Servidor de Tipos permite que aplicações copiem dados estruturados de forma independente de localidade e de arquitetura. Por fim, o Servidor de Arquivos estende os serviços (de arquivos) locais de forma a integrá-los em um único domínio (espaço). No nível 4, arquiteturas e sistemas operacionais são emulados por módulos interpretadores (denominados Emulators). Aplicações de usuários estão espalhadas dos níveis 2 a 5; a camada varia com o tipo de aplicação. Para demonstrar a viabilidade do sistema, implementou-se a estrutura fundamental do HetNOS, incluindo a DCL (um núcleo distribuído heterogêneo), a versões básicas dos módulos servidores, as bibliotecas de procedimentos, além de diversos tipos de aplicações. O sistema conta hoje com mais de 25.000 linhas de código fonte C em mais de 100 arquivos. O desempenho do subsistema de comunicação implementado pela DCL (em avaliações com diferentes configurações de hardware) superou as expectativas iniciais, mas ainda está muito aquém do necessário a aplicações distribuídas. Segundo o que indicam as primeiras experiências realizadas, o HetNOS será bastante útil na prototipação e avaliação de modelos distribuídos, assim como na programação de software distribuído homogêneo e heterogêneo. Projetos de pesquisa do CPGCC envolvendo sistemas distribuídos (p.ex., tolerância a falhas e simulações) podem utilizar o HetNOS como ferramenta para implementação e validação de seus modelos. Futuramente, aplicações distribuídas e paralelas de maior porte poderão ser programadas, como sistemas de gerencia de bases de dados distribuídas, simuladores e sistemas de controle para automação industrial. / The advent of personal computers and, later, of workstations, along with the development of efficient and low-cost communication hardware has led to the popularization of local-area networks. However, distributed software did not experiment the same development of hardware, specially due to the complexity of distributed systems. The machine, system and communication network heterogeneity, inherent to the modern computing environments, is also responsible for the lack of integration and cooperation of available nodes. The purpose of this work is, from the analysis of the main aspects related to distribution and heterogeneity, to design a heterogeneous network operating system. Such system, named HetNOS (which stands for Heterogeneous Network Operating System), allows users to quickly write and validate distributed homogeneous and heterogeneous applications. Users can concentrate their work in the distributed aspects, abstracting communication mechanisms' details, because programming of distributed applications is based on a homogeneous interface platform, easy to use and location-independent. Being a network operating system, HetNOS acts over the set of native operating systems; the environment is extended instead of substituted. There are neither centralized information nor entities, and the algorithms are always distributed, usually yielding more reliability and performance. The HetNOS topology is a logical ring, scheme adopted partly due to the generality of such configuration and partly to simplify the HetNOS distributed kernel design. The communication paradigm between modules is the message exchange, a mechanism implemented over the sockets network application programming interface. There is no shared memory at all, making the system clearer, more manutible and portable. The interrelation between modules is restricted to the message interface defined and accepted by a module. The HetNOS architecture is structured and distributed, as the system is composed of hierarchical layers divided into modules, which in their turn are realized as processes. The layer 1 is the set of native operating system kernels, over which is implemented the distributed heterogeneous HetNOS kernel, namely DCL (states for Distributed Computing Layer). The main service provided by DCL (in layer 2) is a canonical, location-independent, message exchange mechanism. Server and user processes may use multiple forms of message primitives, such as synchronous, asynchronous, blocking and non-blocking send and receive. In the layer 3 are the system servers, which extend and implement in a distributed way the functionality of native systems. The name server is a global data repository, serving other system and user processes. The authorization server implements the security scheme to control the access to the system resources. The type server allows applications to transfer structured data independently of location and architecture. Finally, the file server extends the local (file) services to integrate them into a unique domain (space). In the layer 4, architectures and operating systems are emulated by interpreter modules (named Emulators). User applications are spread over the layers 2 to 5, depending on the application type. In order to prove the system viability, the fundamental HetNOS structure has been implemented, including its distributed heterogeneous kernel, the base of server modules, the procedure libraries, and several types of applications. The system source code has over 25,000 lines of C programming distributed over a hundred files. Although the optimization is an endless process, the performance of the DCL communication subsystem (evaluated using a few different hardware configurations) overestimated initial predictions, but is weak if considered the requirements to distributed processing. Accordingly to the first experiences made, HetNOS will be of great value to evaluate and prototype distributed models, as well as to the programming of homogeneous and heterogeneous distributed software. Local research projects involving distributed systems (e.g., fault tolerance and simulations) may use HetNOS as a tool to validate and implement their models. In the future, more complex distributed and parallel applications will be programmed, such as a distributed database management system, simulators and factory automation control systems.
12

MultiCluster : um modelo de integração baseado em rede peer-to-peer para a concepção de grades locais / MultiCluster: an integration model based on peer-to-peer protocols for the construction of local grids

Barreto, Marcos Ennes January 2010 (has links)
As grades computacionais e as redes peer-to-peer (P2P) surgiram como áreas distintas, com diferentes propósitos, modelos e ferramentas. No decorrer dos últimos anos, estas áreas foram convergindo, uma vez que a infraestrutura e o modelo de execução descentralizada das redes P2P provaram ser uma alternativa adequada para o tratamento de questões relacionadas à manutenção de grades de larga escala, tais como escalabilidade, descoberta, alocação e monitoramento de recursos. O modelo MultiCluster trata a convergência entre grades computacionais e redes peer-to-peer de uma forma mais restrita: os problemas de escalabilidade, de descoberta e alocação de recursos são minimizados considerando-se apenas recursos localmente disponíveis para a construção de uma grade, a qual pode ser usada para a execução de aplicações com diferentes características de acoplamento e comunicação. Esse trabalho apresenta a arquitetura do modelo e seus aspectos funcionais, bem como um primeira implementação do modelo, realizada através da adaptação da biblioteca de programação DECK sobre os protocolos do projeto JXTA. A avaliação do funcionamento dessa implementação é apresentada e discutida, com base em algumas aplicações com diferentes características. / Grid computing and peer-to-peer computing emerged as distinct areas with different purposes, models and tools. Over the last years, these areas has been converging since the infrastructure and the execution model used in peer-to-peer networks have proven to be a suitable way to treat some problems related to the maintenance of large scale grids, such as scalability, monitoring, and resource discovery and allocation. The MultiCluster model addresses the convergence of grids and peer-to-peer networks in a more restricted way: the problems related to scalability, resource allocation and discovery are minimized by considering only local resources for the conception of a small scale grid, which can be used to run applications with different characteristics of granularity and communication. This work presents the MultiCluster architecture and its functional aspects, as well as a first implementation carried out by adapting the DECK programming library to use JXTA protocols and its consequent evaluation, based on applications with different characteristics.
13

O sistema operacional de rede heterogêneo HetNOS / The HetNOS heterogeneous network operating system

Barcellos, Antonio Marinho Pilla January 1993 (has links)
O advento dos computadores pessoais e posteriormente das estações de trabalho, somado ao desenvolvimento de hardware de comunicação eficiente e de baixo custo, levou a popularização das redes locais. Entretanto, o software não presenciou o mesmo desenvolvimento do hardware, especialmente devido a complexidade dos sistemas distribuídos. A heterogeneidade das máquinas, sistemas e redes, inerente aos ambientes computacionais modernos, restringe igualmente a integração e cooperação entre os nodos disponíveis. 0 objetivo do presente trabalho é, a partir da análise dos principais aspectos relacionados à distribuição e à heterogeneidade, desenvolver um sistema operacional de rede heterogêneo. Tal sistema, denominado HetNOS (de Heterogeneous Network Operating System), permite o desenvolvimento e validação de aplicações distribuídas homogêneas e heterogêneas de forma rápida e fácil. Os usuários podem concentrar-se nos aspectos de distribuição dos algoritmos, abstraindo detalhes dos mecanismos de comunicação, pois a programação de aplicações distribuídas é baseada em uma plataforma de interface homogênea, fácil de usar e com independência de localidade. Sendo um sistema operacional de rede, o HetNOS atua sobre o conjunto de sistemas operacionais nativos existentes; o ambiente de trabalho e estendido e não substituído. Não há entidades nem informações centralizadas, e os algoritmos são distribuídos, usualmente resultando maior confiabilidade e desempenho. A topologia do sistema é um anel lógico, esquema justificado pela generalidade de tal configuração e pela simplificação do projeto do núcleo distribuído do HetNOS. O paradigma de comunicação entre módulos e a troca de mensagens, mecanismo implementado sobre a interface de programação em rede sockets. Não há compartilhamento de memória em nenhuma instância, tornando o sistema mais legível, manutenível e portável. A interpelação entre módulos fica restrita à interface de mensagens definidas e aceitas por cada módulo. A arquitetura do HetNOS é estruturada e distribuída, pois o sistema é composto de camadas hierárquicas subdivididas em módulos, estes implementados com processos. O nível 1 corresponde ao conjunto de núcleos de sistemas operacionais nativos suportados, sobre o qual é implementado o núcleo distribuído heterogêneo do HetNOS, a DCL (Distributed Computing Layer). O principal serviço fornecido pela DCL (executada no nível 2), é um subsistema de troca de mensagens canônico e independente de localidade. Processos servidores e de usuários podem utilizar as mais variadas formas de comunicação por mensagens, tal como envio, recepção e propagação de mensagens síncronas, assíncronas, bloqueantes e não bloqueantes. No nível 3 estão os servidores do sistema, que estendem e implementam de forma distribuída a funcionalidade do sistema nativo. O Servidor de Nomes é o repositório global de dados, servindo a processos do sistema e de usuários. O Servidor de Autorização implementa o esquema de controle no acesso a recursos do sistema. O Servidor de Tipos permite que aplicações copiem dados estruturados de forma independente de localidade e de arquitetura. Por fim, o Servidor de Arquivos estende os serviços (de arquivos) locais de forma a integrá-los em um único domínio (espaço). No nível 4, arquiteturas e sistemas operacionais são emulados por módulos interpretadores (denominados Emulators). Aplicações de usuários estão espalhadas dos níveis 2 a 5; a camada varia com o tipo de aplicação. Para demonstrar a viabilidade do sistema, implementou-se a estrutura fundamental do HetNOS, incluindo a DCL (um núcleo distribuído heterogêneo), a versões básicas dos módulos servidores, as bibliotecas de procedimentos, além de diversos tipos de aplicações. O sistema conta hoje com mais de 25.000 linhas de código fonte C em mais de 100 arquivos. O desempenho do subsistema de comunicação implementado pela DCL (em avaliações com diferentes configurações de hardware) superou as expectativas iniciais, mas ainda está muito aquém do necessário a aplicações distribuídas. Segundo o que indicam as primeiras experiências realizadas, o HetNOS será bastante útil na prototipação e avaliação de modelos distribuídos, assim como na programação de software distribuído homogêneo e heterogêneo. Projetos de pesquisa do CPGCC envolvendo sistemas distribuídos (p.ex., tolerância a falhas e simulações) podem utilizar o HetNOS como ferramenta para implementação e validação de seus modelos. Futuramente, aplicações distribuídas e paralelas de maior porte poderão ser programadas, como sistemas de gerencia de bases de dados distribuídas, simuladores e sistemas de controle para automação industrial. / The advent of personal computers and, later, of workstations, along with the development of efficient and low-cost communication hardware has led to the popularization of local-area networks. However, distributed software did not experiment the same development of hardware, specially due to the complexity of distributed systems. The machine, system and communication network heterogeneity, inherent to the modern computing environments, is also responsible for the lack of integration and cooperation of available nodes. The purpose of this work is, from the analysis of the main aspects related to distribution and heterogeneity, to design a heterogeneous network operating system. Such system, named HetNOS (which stands for Heterogeneous Network Operating System), allows users to quickly write and validate distributed homogeneous and heterogeneous applications. Users can concentrate their work in the distributed aspects, abstracting communication mechanisms' details, because programming of distributed applications is based on a homogeneous interface platform, easy to use and location-independent. Being a network operating system, HetNOS acts over the set of native operating systems; the environment is extended instead of substituted. There are neither centralized information nor entities, and the algorithms are always distributed, usually yielding more reliability and performance. The HetNOS topology is a logical ring, scheme adopted partly due to the generality of such configuration and partly to simplify the HetNOS distributed kernel design. The communication paradigm between modules is the message exchange, a mechanism implemented over the sockets network application programming interface. There is no shared memory at all, making the system clearer, more manutible and portable. The interrelation between modules is restricted to the message interface defined and accepted by a module. The HetNOS architecture is structured and distributed, as the system is composed of hierarchical layers divided into modules, which in their turn are realized as processes. The layer 1 is the set of native operating system kernels, over which is implemented the distributed heterogeneous HetNOS kernel, namely DCL (states for Distributed Computing Layer). The main service provided by DCL (in layer 2) is a canonical, location-independent, message exchange mechanism. Server and user processes may use multiple forms of message primitives, such as synchronous, asynchronous, blocking and non-blocking send and receive. In the layer 3 are the system servers, which extend and implement in a distributed way the functionality of native systems. The name server is a global data repository, serving other system and user processes. The authorization server implements the security scheme to control the access to the system resources. The type server allows applications to transfer structured data independently of location and architecture. Finally, the file server extends the local (file) services to integrate them into a unique domain (space). In the layer 4, architectures and operating systems are emulated by interpreter modules (named Emulators). User applications are spread over the layers 2 to 5, depending on the application type. In order to prove the system viability, the fundamental HetNOS structure has been implemented, including its distributed heterogeneous kernel, the base of server modules, the procedure libraries, and several types of applications. The system source code has over 25,000 lines of C programming distributed over a hundred files. Although the optimization is an endless process, the performance of the DCL communication subsystem (evaluated using a few different hardware configurations) overestimated initial predictions, but is weak if considered the requirements to distributed processing. Accordingly to the first experiences made, HetNOS will be of great value to evaluate and prototype distributed models, as well as to the programming of homogeneous and heterogeneous distributed software. Local research projects involving distributed systems (e.g., fault tolerance and simulations) may use HetNOS as a tool to validate and implement their models. In the future, more complex distributed and parallel applications will be programmed, such as a distributed database management system, simulators and factory automation control systems.
14

Performance Analysis of Distributed Object Middleware Technologies / Prestanda Analys av Distribuerade Objektorienterade Mellanlager

Arneng, Per, Bladh, Richard January 2003 (has links)
Each day new computers around the world connects to the Internet or some network. The increasing number of people and computers on the Internet has lead to a demand for more services in different domains that can be accessed from many locations in the network. When the computers communicate they use different kinds of protocols to be able to deliver a service. One of these protocol families are remote procedure calls between computers. Remote procedure calls has been around for quite some time but it is with the Internet that its usage has increased a lot and especially in its object oriented form which comes from the fact that object oriented programming has become a popular choice amongst programmers. When a programmer has to choose a distributed object middleware there is a lot to take into consideration and one of those things is performance. This master thesis aims to give a performance comparison between different distributed object middleware technologies and give an overview of the performance difference between them and make it easier for a programmer to choose one of the technologies when performance is an important factor. In this thesis we have evaluated the performance of CORBA, DCOM, RMI, RMI-IIOP, Remoting-TCP and Remoting-HTTP. The results we have seen from this evaluation is that DCOM and RMI are the distributed object middleware technologies with the best overall performance in terms of throughput and round trip time. Remoting-TCP generally generates the least amount of network traffic, while Remoting-HTTP generates the most amount of network traffic due to it's SOAP-formated protocol. / Detta magister arbete handlar om en prestanda analys av distribuerade objectorienterande mellanlagers teknologier. Dokumentet jämför prestandan på följande teknologier: CORBA, DCOM, RMI, RMI-IIOP, Remoting-TCP and Remoting-HTTP. Jämförelsen är i både server och klient perspektiv. / The authors can probably not be reached on the e-mail addresses given here or in the thesis. A simple search on any search engine will probably lead to valid an address. The reason for this is becouse the student mail is not a longterm address.
15

Um Compilador para a linguagem RS distribuída / A compiler for distributed RS language

Librelotto, Giovani Rubert January 2001 (has links)
A Linguagem RS é destinada a programação de núcleos reativos centralizados. Tais núcleos são responsáveis por toda a lógica de um sistema reativo, manipulando os sinais de entrada, realizando as reações e gerando os sinais de saída. Sendo sua idéia inicial tratar apenas processos centralizados, não houve a preocupação com a distribuição. Este trabalho tem como principal objetivo apresentar os aspectos introduzidos de uma nova versão para a Linguagem e para o Compilador RS, que possibilitam a execução de programas distribuídos. Além da possibilidade de execução de sistemas reativos distribuídos, foi acrescentado à Linguagem RS extensões já previstas na sua criação, como sinais inibidores, regras de exclusão mútua e concomitância, a possibilidade de disparo de mais de uma regra em um mesmo instante e a limpeza léxica do código fonte RS. As modificações incorporadas nesta nova versão da linguagem, foram efetivadas através de um novo compilador, chamado de Compilador RS 5.0. O protótipo implementado oferece a geração de três formatos de código: o formato padrão da linguagem RS (os autômatos e as regras correspondentes), códigos na linguagem C para a simulação dos autômatos (tanto para programas distribuídos quanto não-distribuídos) e arquivos no formato portável OC, que é um formato de código objeto padrão para as linguagens reativas. Para a distribuição e implementação da Linguagem RS foi necessária a criação de um novo núcleo de comunicação do MDX, que é responsável pela comunicação dos autômatos RSD. Este núcleo é dividido em três partes. A primeira trata da definição de um modelo formal com as mudanças necessárias para que a linguagem RS consiga trabalhar de forma distribuída, a segunda mostra o projeto do novo núcleo MDX e a terceira apresenta a implementação em C e MDX dos autômatos gerados pelo Compilador RS 5.0. Por fim, exemplos de aplicação desta nova linguagem são apresentados, onde podem ser vistos a importância e o acréscimo proporcionado por este trabalho tanto à linguagem RS quanto à programação de sistemas reativos síncronos. / The RS language is intended to the programming of centralized reactive kernels. Such kernels are responsible for the logic of a reactive system, manipulating the input signals, carrying through the reactions and generating the output signals. Being its initial idea to treat only centered processes, it did not have the concern with the distribution. The main objective of this work is to describe the process of creation of a new version for the Language and Compiler RS, that make possible the execution of distributed programs. Beyond the possibility of execution distributed reactive systems, it was added to RS language foreseen extensions already in its creation, as inhibiting signals, rules of manual exclusion and concurrence, the possibility of detonation of more than a rule in one exactly instant and the lexical cleanness of the RS code source. The modifications incorporated in this new version of the language, had been accomplished through a new compiler, called Compiler RS 5.0. The implemented archetype offers the generation of three formats of code: the standard format of RS language (the corresponding automatons and rules), codes in the language C for the simulation of the automatons and archives in OC portable format, that is a object format code standard for the reactive languages. For the distribution and implementation of Language RS was necessary the creation of a new kernel of communication of the MDX, that is responsible for the communication of RSD automatons. It is divided in three parts. The first one deals with the definition of a formal model that defines the necessary changes so that RS language obtains to work of distributed form, the second shows the design of new MDX kernel and third presents the implementation in C and MDX of the automatons generated for Compiler RS 5.0. Finally, examples of application of this new language are presented, where the importance and the proportionate upgrade for this work to RS language how to the programming of synchronous reactive systems can in such a way be seen.
16

Computación eficiente del alineamiento de secuencias de ADN sobre cluster de multicores

Rucci, Enzo 30 July 2013 (has links)
Una de las áreas de mayor interés y crecimiento en los últimos años dentro del procesamiento paralelo es la del tratamiento de grandes volúmenes de datos, tales como las secuencias de ADN. El tipo de procesamiento extensivo de comparación para analizar patrones genéticos requiere un esfuerzo importante en el desarrollo de algoritmos paralelos eficientes. El alineamiento de secuencias de ADN representa una de las operaciones más importantes dentro de la bioinformática. En 1981, Smith y Waterman desarrollaron un método para el alineamiento local de secuencias. Sin embargo, en la práctica se emplean diversas heurísticas en su lugar, debido a los requerimientos de procesamiento y de memoria del algoritmo Smith-Waterman. Si bien son más rápidas, las heurísticas no garantizan que el alineamiento óptimo sea encontrado. Es por ello que resulta interesante estudiar cómo aplicar la potencia de cómputo de plataformas paralelas actuales de manera de acelerar el proceso de alinear secuencias sin perder precisión en los resultados. Los niveles insostenibles de generación de calor y consumo de energía que se presentan al escalar al máximo la velocidad de los procesadores mononúcleos motivaron el surgimiento de los procesadores de múltiples núcleos (multicore). Un procesador multicore integra dos o más núcleos computacionales dentro de un único chip y, si bien estos son más simples y menos veloces, al combinarlos permiten mejorar el rendimiento global del procesador y al mismo tiempo hacerlo más eficiente energéticamente. Al incorporar este tipo de procesadores a los clusters convencionales, se da origen a una arquitectura conocida como cluster de multicores, que combina memoria compartida y distribuida, y donde la comunicación entre las diferentes unidades de procesamiento resulta ser heterogénea. En este trabajo se presenta un algoritmo paralelo distribuido para el alineamiento de secuencias de ADN basado en el método Smith-Waterman para ser ejecutado sobre las arquitecturas de cluster actuales. Además, se realiza un análisis de rendimiento del mismo. Por último, se presentan las conclusiones y las posibles líneas de trabajo futuro.
17

Um Compilador para a linguagem RS distribuída / A compiler for distributed RS language

Librelotto, Giovani Rubert January 2001 (has links)
A Linguagem RS é destinada a programação de núcleos reativos centralizados. Tais núcleos são responsáveis por toda a lógica de um sistema reativo, manipulando os sinais de entrada, realizando as reações e gerando os sinais de saída. Sendo sua idéia inicial tratar apenas processos centralizados, não houve a preocupação com a distribuição. Este trabalho tem como principal objetivo apresentar os aspectos introduzidos de uma nova versão para a Linguagem e para o Compilador RS, que possibilitam a execução de programas distribuídos. Além da possibilidade de execução de sistemas reativos distribuídos, foi acrescentado à Linguagem RS extensões já previstas na sua criação, como sinais inibidores, regras de exclusão mútua e concomitância, a possibilidade de disparo de mais de uma regra em um mesmo instante e a limpeza léxica do código fonte RS. As modificações incorporadas nesta nova versão da linguagem, foram efetivadas através de um novo compilador, chamado de Compilador RS 5.0. O protótipo implementado oferece a geração de três formatos de código: o formato padrão da linguagem RS (os autômatos e as regras correspondentes), códigos na linguagem C para a simulação dos autômatos (tanto para programas distribuídos quanto não-distribuídos) e arquivos no formato portável OC, que é um formato de código objeto padrão para as linguagens reativas. Para a distribuição e implementação da Linguagem RS foi necessária a criação de um novo núcleo de comunicação do MDX, que é responsável pela comunicação dos autômatos RSD. Este núcleo é dividido em três partes. A primeira trata da definição de um modelo formal com as mudanças necessárias para que a linguagem RS consiga trabalhar de forma distribuída, a segunda mostra o projeto do novo núcleo MDX e a terceira apresenta a implementação em C e MDX dos autômatos gerados pelo Compilador RS 5.0. Por fim, exemplos de aplicação desta nova linguagem são apresentados, onde podem ser vistos a importância e o acréscimo proporcionado por este trabalho tanto à linguagem RS quanto à programação de sistemas reativos síncronos. / The RS language is intended to the programming of centralized reactive kernels. Such kernels are responsible for the logic of a reactive system, manipulating the input signals, carrying through the reactions and generating the output signals. Being its initial idea to treat only centered processes, it did not have the concern with the distribution. The main objective of this work is to describe the process of creation of a new version for the Language and Compiler RS, that make possible the execution of distributed programs. Beyond the possibility of execution distributed reactive systems, it was added to RS language foreseen extensions already in its creation, as inhibiting signals, rules of manual exclusion and concurrence, the possibility of detonation of more than a rule in one exactly instant and the lexical cleanness of the RS code source. The modifications incorporated in this new version of the language, had been accomplished through a new compiler, called Compiler RS 5.0. The implemented archetype offers the generation of three formats of code: the standard format of RS language (the corresponding automatons and rules), codes in the language C for the simulation of the automatons and archives in OC portable format, that is a object format code standard for the reactive languages. For the distribution and implementation of Language RS was necessary the creation of a new kernel of communication of the MDX, that is responsible for the communication of RSD automatons. It is divided in three parts. The first one deals with the definition of a formal model that defines the necessary changes so that RS language obtains to work of distributed form, the second shows the design of new MDX kernel and third presents the implementation in C and MDX of the automatons generated for Compiler RS 5.0. Finally, examples of application of this new language are presented, where the importance and the proportionate upgrade for this work to RS language how to the programming of synchronous reactive systems can in such a way be seen.
18

Um Compilador para a linguagem RS distribuída / A compiler for distributed RS language

Librelotto, Giovani Rubert January 2001 (has links)
A Linguagem RS é destinada a programação de núcleos reativos centralizados. Tais núcleos são responsáveis por toda a lógica de um sistema reativo, manipulando os sinais de entrada, realizando as reações e gerando os sinais de saída. Sendo sua idéia inicial tratar apenas processos centralizados, não houve a preocupação com a distribuição. Este trabalho tem como principal objetivo apresentar os aspectos introduzidos de uma nova versão para a Linguagem e para o Compilador RS, que possibilitam a execução de programas distribuídos. Além da possibilidade de execução de sistemas reativos distribuídos, foi acrescentado à Linguagem RS extensões já previstas na sua criação, como sinais inibidores, regras de exclusão mútua e concomitância, a possibilidade de disparo de mais de uma regra em um mesmo instante e a limpeza léxica do código fonte RS. As modificações incorporadas nesta nova versão da linguagem, foram efetivadas através de um novo compilador, chamado de Compilador RS 5.0. O protótipo implementado oferece a geração de três formatos de código: o formato padrão da linguagem RS (os autômatos e as regras correspondentes), códigos na linguagem C para a simulação dos autômatos (tanto para programas distribuídos quanto não-distribuídos) e arquivos no formato portável OC, que é um formato de código objeto padrão para as linguagens reativas. Para a distribuição e implementação da Linguagem RS foi necessária a criação de um novo núcleo de comunicação do MDX, que é responsável pela comunicação dos autômatos RSD. Este núcleo é dividido em três partes. A primeira trata da definição de um modelo formal com as mudanças necessárias para que a linguagem RS consiga trabalhar de forma distribuída, a segunda mostra o projeto do novo núcleo MDX e a terceira apresenta a implementação em C e MDX dos autômatos gerados pelo Compilador RS 5.0. Por fim, exemplos de aplicação desta nova linguagem são apresentados, onde podem ser vistos a importância e o acréscimo proporcionado por este trabalho tanto à linguagem RS quanto à programação de sistemas reativos síncronos. / The RS language is intended to the programming of centralized reactive kernels. Such kernels are responsible for the logic of a reactive system, manipulating the input signals, carrying through the reactions and generating the output signals. Being its initial idea to treat only centered processes, it did not have the concern with the distribution. The main objective of this work is to describe the process of creation of a new version for the Language and Compiler RS, that make possible the execution of distributed programs. Beyond the possibility of execution distributed reactive systems, it was added to RS language foreseen extensions already in its creation, as inhibiting signals, rules of manual exclusion and concurrence, the possibility of detonation of more than a rule in one exactly instant and the lexical cleanness of the RS code source. The modifications incorporated in this new version of the language, had been accomplished through a new compiler, called Compiler RS 5.0. The implemented archetype offers the generation of three formats of code: the standard format of RS language (the corresponding automatons and rules), codes in the language C for the simulation of the automatons and archives in OC portable format, that is a object format code standard for the reactive languages. For the distribution and implementation of Language RS was necessary the creation of a new kernel of communication of the MDX, that is responsible for the communication of RSD automatons. It is divided in three parts. The first one deals with the definition of a formal model that defines the necessary changes so that RS language obtains to work of distributed form, the second shows the design of new MDX kernel and third presents the implementation in C and MDX of the automatons generated for Compiler RS 5.0. Finally, examples of application of this new language are presented, where the importance and the proportionate upgrade for this work to RS language how to the programming of synchronous reactive systems can in such a way be seen.
19

RedBlue: cluster para pesquisa e ensino em Engenharia

Pedras, Marcelo Br?ulio 13 November 2017 (has links)
Submitted by Jos? Henrique Henrique (jose.neves@ufvjm.edu.br) on 2018-01-31T18:35:38Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) marcelo_braulio_pedras.pdf: 2382099 bytes, checksum: 3edc0615e188d815d0a9d1a514edfb8f (MD5) / Approved for entry into archive by Rodrigo Martins Cruz (rodrigo.cruz@ufvjm.edu.br) on 2018-02-03T12:04:59Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) marcelo_braulio_pedras.pdf: 2382099 bytes, checksum: 3edc0615e188d815d0a9d1a514edfb8f (MD5) / Made available in DSpace on 2018-02-03T12:04:59Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) marcelo_braulio_pedras.pdf: 2382099 bytes, checksum: 3edc0615e188d815d0a9d1a514edfb8f (MD5) Previous issue date: 2017 / Programas de computadores s?o muito utilizados para resolu??o de problemas complexos em engenharia. Atualmente, espera-se que um engenheiro saiba mais que apenas utiliz?-los, sendo esta habilidade muito valorizada no mercado de trabalho. Tal habilidade possibilita que profissionais consigam utilizar um maior conjunto de ferramentas para solucionar problemas. As simula??es computacionais, por exemplo, podem ser utilizadas como ferramenta de aquisi??o de conhecimento, permitindo que um profissional ou um estudante crie, teste e valide suas hip?teses. As simula??es tamb?m s?o utilizadas em pesquisas cient?ficas como alternativa a experimentos de dif?cil obten??o e na ind?stria para reduzir custos. Por?m, uma simula??o pode consumir mais recursos do que os dispon?veis em um computador, tornando seu tempo de execu??o invi?vel. Uma forma barata de se obter mais desempenho ? utilizando um cluster de computadores comuns. Dessa forma, seria poss?vel utilizar os laborat?rios de inform?tica dispon?veis para execut?-las. Entretanto, isso implicaria em conhecimentos aprofundados em computa??o paralela e/ou distribu?da por parte dos usu?rios, dificultado o desenvolvimento de aplica??es. Com o objetivo de minimizar o tempo de execu??o de simula??es complexas utilizando clusters e permitir que usu?rios com poucos conhecimentos em programa??o paralela e/ou distribu?da possam utiliz?-lo, este trabalho apresenta uma solu??o denominada ?plataforma RedBlue?. Essa plataforma recebe a aplica??o do usu?rio e a executa nos n?s do cluster de forma autom?tica e transparente para o mesmo. Para testar a plataforma desenvolvida foram realizados testes com redes neurais artificiais e com um algoritmo gen?tico simples, ambos buscando descobrir a melhor configura??o de par?metros para determinado problema. Utilizaram-se 60 m?quinas de um laborat?rio de inform?tica para testar a plataforma. Os resultados mostram que houve uma redu??o de at? 98% no tempo de execu??o do experimento com redes neurais e 99,3% para o experimento com o algoritmo gen?tico em compara??o a execu??o sequencial. Esses resultados indicam que a plataforma ? vi?vel para utiliza??o em laborat?rios de inform?tica, possibilitando uma redu??o consider?vel no tempo de execu??o de simula??es complexas. A plataforma ? aplic?vel a um n?mero flex?vel de computadores, ajustando-se ? capacidade dos laborat?rios. Al?m disso, pode ser utilizada como instrumento ?til ao ensino e pesquisa. Ressalta-se que a utiliza??o de simula??es computacionais para ensino e pesquisa contribui n?o apenas para a aprendizagem de conte?dos, mas tamb?m para o surgimento de habilidades necess?rias ao mercado de trabalho do engenheiro. / Disserta??o (Mestrado Profissional) ? Programa de P?s-Gradua??o em Educa??o, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 2017. / Computer programs are commonly used to solve complex engineering problems, and it is expected from an engineer a more than hands-on experience in using these computer programs with the ability to develop them using a wide range of tools. Computational simulations, for instance, can be used as tools for knowledge acquisition allowing a professional or student to create, test and validate their hypotheses. Such simulations are used at an academic setting as an alternative to expensive experiments. However, a simulation can take more resources than those available in a single computer machine, rendering long execution times. To create a cluster of regular computers, such as the ones already available at computer labs, is a cheaper alternative to improve such execution times. One major drawback of this approach is that the user must be knowledgeable in parallel and distributed programming, which makes software development harder. To overcome such constraints, this work presents a solution named ?RedBlue platform?that receives and runs user?s applications over a computer cluster in an automatic, transparent manner. To test the RedBlue platform, we performed a set of tests via artificial neural networks and a simplified genetic algorithm, whose main purpose was to search for the best-suited parameter configurations for the application problem at hand. To test the platform, the experiments were run using 60 computer machines from a computer lab. This study has identified a reduction in execution times of 98% for neural networks, and a reduction of 99,3% for the genetic algorithm, and also shown that the platform is suited for real-world applications of simulations at computer labs. Furthermore, the platform accepts a variable number of computers, easily adaptable to different academic environments, such as research and training. Lastly, we have noted that computational simulations not only contribute to research and learning, but also to develop the required industry skills.
20

Programming networks with intensional destinations / Programmation distribuée avec destinataires intentionnelles

Ahmad Kassem, Ahmad 04 November 2013 (has links)
La programmation distribuée est une tâche difficile. Elle a énormément gagné en importance avec le développement des réseaux qui supportent un nombre croissant exponentiellement d’applications. Les systèmes distribués fournissent des fonctionnalités assurées par les noeuds qui forment un réseau et échangent des données et services, éventuellement par le biais de messages. La provenance du service n’est souvent pas pertinente, alors que sa fiabilité est essentielle. Notre objectif est de fournir un nouveau modèle de communication qui permet de spécifier intentionnellement lequel service est demandé, et non les noeuds qui le fournissent. Cette spécification intentionnelle des échanges offre un potentiel pour faciliter la programmation distribuée, garantir la persistance des données dans les messages et la résilience des systèmes, qui constituent le sujet de cette thèse. Nous proposons donc un cadre qui supporte des messages avec destinations intentionnelles, qui sont évaluées uniquement à la volée au fur et à mesure du déplacement des messages. Nous introduisons un langage, Questlog, qui gère les destinations intentionnelles. Contrairement aux langages à base de règles existants pour les réseaux, comme Datalog, qui suivent le mode push, Questlog permet d’exprimer des stratégies complexes afin de récupérer de manière récursive des données distribuées en mode pull. Le langage fonctionne sur une machine virtuelle qui s’appuie sur un SGBD. Nous démontrons l’approche avec des exemples pris dans deux domaines: (i) les architectures orientées données, où une classe restreinte d’applications client-serveur sont distribuées de manière transparente sur les systèmes pair-à-pair basés sur une DHT, (ii) les réseaux de capteurs sans fil, où un protocole de groupement des noeuds en clusters virtuels est proposé pour agréger les données. Dans ce protocole, les chefs des clusters sont élus à l’aide des destinations intentionnelles. Nos simulations sur la plate-forme QuestMonitor montre que cette approche offre une simplicité, une modularité aux protocoles, ainsi qu’une fiabilité accrue. / Distributed programming is a challenging task. It has tremendously gained importance with the wide development of networks, which support an exponentially increasing number of applications. Distributed systems provide functionalities that are ensured by nodes which form a network and exchange data and services possibly through messages. The provenance of the service is often not relevant, while its reliability is essential. Our aim is to provide a new communication model which allows to specify intensionally what service is needed as opposed to which nodes provide it. The intensional specification of exchanges offers a potential to facilitate distributed programming, to provide persistence of data in messages and resilience of systems, that constitute the topic of this thesis. We propose a framework that supports messages with intensional destinations, which are evaluated only on the fly while the messages are traveling. We introduce a rule-based language, Questlog, to handle the intensional destinations. In contrast to existing network rule-based languages, which like Datalog follow the push mode, Questlog allows to express complex strategies to recursively retrieve distributed data in pull mode. The language runs over a virtual machine which relies on a DBMS. We demonstrate the approach with examples taken from two domains: (i) data-centric architectures, where a class of restricted client-server applications are seamlessly distributed over peer-to-peer systems based on a DHT, and (ii) wireless sensor networks, where a virtual clustering protocol is proposed to aggregate data, in which cluster heads are elected using intensional destinations. Our simulations on the QuestMonitor platform demonstrates that this approach offers simplicity and modularity to protocols, as well as an increased reliability.

Page generated in 0.1191 seconds