Spelling suggestions: "subject:"codistribution quasistationnaire"" "subject:"codistribution phasestationnaire""
1 |
Processus de Fleming-Viot, distributions quasi-stationnaires et marches aléatoires en interaction de type champ moyen / Fleming-Viot process, quasi-stationary distributions and random walks in mean field type interactionThai, Anh-Thi Marie Noémie 27 November 2015 (has links)
Dans cette thèse nous étudions le comportement asymptotique de systèmes de particules en interaction de type champ moyen en espace discret, systèmes pour lesquels l'interaction a lieu par l'intermédiaire de la mesure empirique. Dans la première partie de ce mémoire, nous nous intéressons aux systèmes de particules de type Fleming-Viot: les particules se déplacent indépendamment suivant une dynamique markovienne jusqu'au moment où l'une d'entre elles touche un état absorbant. A cet instant, la particule absorbée choisit uniformément une autre particule et saute sur sa position. L'ergodicité du processus est établie dans le cadre de marches aléatoires sur N avec dérive vers l'origine et pour une dynamique proche de celle du graphe complet. Pour ce dernier, nous obtenons une estimation quantitative de la convergence en temps long à l'aide de la courbure de Wasserstein. Nous montrons de plus la convergence de la distribution empirique stationnaire vers une unique distribution quasi-stationnaire, quand le nombre de particules tend vers l'infini. Dans la deuxième partie de ce mémoire, nous nous intéressons au comportement en temps long et quand le nombre de particules devient grand, d'un système de processus de naissance et mort pour lequel les particules interagissent à chaque instant par le biais de la moyenne de leurs positions. Nous établissons l'existence d'une limite macroscopique, solution d'une équation non linéaire ainsi que le phénomène de propagation du chaos avec une estimation quantitative et uniforme en temps / In this thesis we study the asymptotic behavior of particle systems in mean field type interaction in discrete space, where the system acts over one fixed particle through the empirical measure of the system. In the first part of this thesis, we are interested in Fleming-Viot particle systems: the particles move independently of each other until one of them reaches an absorbing state. At this time, the absorbed particle jumps instantly to the position of one of the other particles, chosen uniformly at random. The ergodicity of the process is established in the case of random walks on N with a dirft towards the origin and on complete graph dynamics. For the latter, we obtain a quantitative estimate of the convergence described by the Wasserstein curvature. Moreover, under the invariant measure, we show the convergence of the empirical measure towards the unique quasi-stationary distribution as the size of the system tends to infinity. In the second part of this thesis, we study the behavior in large time and when the number of particles is large of a system of birth and death processes where at each time a particle interacts with the others through the mean of theirs positions. We establish the existence of a macroscopic limit, solution of a non linear equation and the propagation of chaos phenomenon with quantitative and uniform in time estimate
|
2 |
Théorie spectrale pour des applications de Poincaré aléatoires / Spectral theory for random Poincaré mapsBaudel, Manon 01 December 2017 (has links)
Nous nous intéressons à des équations différentielles stochastiques obtenues en perturbant par un bruit blanc des équations différentielles ordinaires admettant N orbites périodiques asymptotiquement stables. Nous construisons une chaîne de Markov à temps discret et espace d’états continu appelée application de Poincaré aléatoire qui hérite du comportement métastable du système. Nous montrons que ce processus admet exactement N valeurs propres qui sont exponentiellement proches de 1 et nous donnons des expressions pour ces valeurs propres et les fonctions propres associées en termes de fonctions committeurs dans les voisinages des orbites périodiques. Nous montrons également que ces valeurs propres sont bien séparées du reste du spectre. Chacune de ces valeurs propres exponentiellement proche de 1 est également reliée à un temps d’atteinte de ces voisinages. De plus, les N valeurs propres exponentiellement proches de 1 et fonctions propres à gauche et à droite associées peuvent être respectivement approchées par des valeurs propres principales, des distributions quasi-stationnaires, et des fonctions propres principales à droite de processus tués quand ils atteignent ces voisinages. Les preuves reposent sur une représentation de type Feynman–Kac pour les fonctions propres, la transformée harmonique de Doob, la théorie spectrale des opérateurs compacts et une propriété de type équilibré détaillé satisfaite par les fonctions committeurs. / We consider stochastic differential equations, obtained by adding weak Gaussian white noise to ordinary differential equations admitting N asymptotically stable periodic orbits. We construct a discrete-time,continuous-space Markov chain, called a random Poincaré map, which encodes the metastable behaviour of the system. We show that this process admits exactly N eigenvalues which are exponentially close to 1,and provide expressions for these eigenvalues and their left and right eigenfunctions in terms of committorfunctions of neighbourhoods of periodic orbits. We also provide a bound for the remaining part of the spectrum. The eigenvalues that are exponentially close to 1 and the right and left eigenfunctions are well-approximated by principal eigenvalues, quasistationary distributions, and principal right eigenfunctions of processes killed upon hitting some of these neighbourhoods. Each eigenvalue that is exponentially close to 1is also related to the mean exit time from some metastable neighborhood of the periodic orbits. The proofsrely on Feynman–Kac-type representation formulas for eigenfunctions, Doob’s h-transform, spectral theory of compact operators, and a recently discovered detailed balance property satisfied by committor functions.
|
Page generated in 0.1513 seconds