• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 11
  • 7
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 46
  • 46
  • 16
  • 15
  • 13
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Proposta de metodogia de engenharia de domínio para o desenvolvimento de sistemas de automação industrial

Kipper, Marcelo Mondadori January 2010 (has links)
Engenharia de domínio (do inglês: DE - Domain Engineering) é uma proposta surgida no âmbito da Engenharia de Software e que visa o aumento do reuso no desenvolvimento de sistemas, buscando uma redução dos custos e do tempo de desenvolvimento. A aplicação desta técnica em sistemas de automação industrial (produtos e plantas industriais) – os quais incluem múltiplas disciplinas (sistemas mecânicos, elétricos, pneumáticos, entre outros), diferentemente da engenharia de Software que trata basicamente do reuso de artefatos de Software – vem despertando o interesse de algumas instituições de pesquisa, como o IAS (Instituto de Automação Industrial e Engenharia de Software da Universidade de Stuttgart), e será abordada neste trabalho. A engenharia de plantas industriais é crescentemente realizada nas chamadas ferramentas de gerenciamento de ciclo de vida de plantas PLM (Plant ou "Production Lifecycle Management"), que se originou do conceito de "Product Lifecycle Management", cuja sigla também é PLM. A idéia destas ferramentas é o gerenciamento de ativos não somente durante o processo de engenharia, mas também durante a operação e manutenção até o descomissionamento das plantas. Muitas destas ferramentas PLM englobam o paradigma de orientação a objetos da Engenharia de Software, e baseadas neste paradigma, abordam a integração de dados entre os artefatos das várias disciplinas. Este trabalho apresenta o conceito de um artefato técnico reutilizável multidisciplinar, que foi a base para a elaboração de uma metodologia de engenharia de Domínio adaptada a ferramentas PLM, que se baseiam no paradigma de orientação a objetos. A metodologia proposta foi validada experimentalmente em um estudo de caso de uma Planta Modular de Produção (MPS – Modular Production System) em conjunto com a ferramenta PLM Comos da Siemens. Os resultados obtidos indicam a viabilidade da implementação da metodologia proposta em projetos na indústria, visando a redução de custo e tempo de desenvolvimento através do reuso de artefatos técnicos multidisciplinares em domínios com aplicações semelhantes. / Domain Engineering comes from the Software field and aims the increase of reuse to allow reduction of cost and time in the development of systems. The deployment of this methodology in automation systems (products and industrial plants) – in which more disciplines (mechanical, electrical, pneumatic, among others) are present and therefore differs from the Software engineering, that deals basically with the reuse of Software artifacts – has awakened the interest of some research institutes, like the IAS (Institute of Industrial Automation and Software Engineering of the University of Stuttgart), and will be analyzed during this work. The engineering of industrial plants is increasingly executed using the so called PLM Tools ("Plant or Production Lifecycle Management"), whose concept was originated from "Product Lifecycle Management", also abbreviated as PLM. The idea of these tools is to manage the assets not only in the engineering process, but also through operation and maintenance until the decommissioning of the industrial plants. Many of these PLM Tools support the object orientation principle from the Software engineering, and based upon this principle they address the integration of data from artifacts of the various disciplines. This work presents a concept for a multidisciplinary reusable technical artifact that was the base for the elaboration of an adapted DE Methodology for PLM Tools, in which the object oriented principle, is present. The presented ideas have been experimentally validated using as a case study a Modular Production System (MPS) together with the PLM Tool Comos from the company Siemens. The obtained results indicate a feasible implementation of the proposed methodology in the industry, aiming cost and time reduction through the reuse of multidisciplinary technical artifacts in domains with similar applications.
22

Development of Software for Feature Model Rendering

Abid, Saad Bin, Wei, Xian January 2006 (has links)
This Master’s thesis is aimed at improving the management of artifacts in the context of a joint-project between Jönköping University with the SEMCO project and industrial partner, a company involved in developing software for safety components. Both have a slightly distinct interest but this project can serve both parties. Nowadays feature modelling is efficient way for domain analysis. The purpose of this master thesis is to analysis existing four popular feature diagrams, to find out commonalities between each of them and conclude results to give suggestions of how to use existing notation systems efficiently and according to situations. The developed software based on knowledge established from research analysis. Two notation systems which are suggested in research part of the thesis report are implemented in the developed software “NotationManager”. The development procedures are also described and developer choices are mentioned along with the comparisons according to the situations Scope of the research part as well as development is discussed. Future work for developed solution is also suggested.
23

Computer Modeling and Simulation of Morphotropic Phase Boundary Ferroelectrics

Rao, Weifeng 20 August 2009 (has links)
Phase field modeling and simulation is employed to study the underlying mechanism of enhancing electromechanical properties in single crystals and polycrystals of perovskite-type ferroelectrics around the morphotropic phase boundary (MPB). The findings include: (I) Coherent phase decomposition near MPB in PZT is investigated. It reveals characteristic multidomain microstructures, where nanoscale lamellar domains of tetragonal and rhombohedral phases coexist with well-defined crystallographic orientation relationships and produce coherent diffraction effects. (II) A bridging domain mechanism for explaining the phase coexistence observed around MPBs is presented. It shows that minor domains of metastable phase spontaneously coexist with and bridge major domains of stable phase to reduce total system free energy, which explains the enhanced piezoelectric response around MPBs. (III) We demonstrate a grain size- and composition-dependent behavior of phase coexistence around the MPBs in polycrystals of ferroelectric solid solutions. It shows that grain boundaries impose internal mechanical and electric boundary conditions, which give rise to the grain size effect of phase coexistence, that is, the width of phase coexistence composition range increases with decreasing grain sizes. (IV) The domain size effect is explained by the domain wall broadening mechanism. It shows that, under electric field applied along the nonpolar axis, without domain wall motion, the domain wall broadens and serves as embryo of field-induced new phase, producing large reversible strain free from hysteresis. (V) The control mechanisms of domain configurations and sizes in crystallographically engineered ferroelectric single crystals are investigated. It reveals that highest domain wall densities are obtained with intermediate magnitude of electric field applied along non-polar axis of ferroelectric crystals. (VI) The domain-dependent internal electric field associated with the short-range ordering of charged point defects is demonstrated to stabilize engineered domain microstructure. The internal electric field strength is estimated, which is in agreement with the magnitude evaluated from available experimental data. (VII) The poling-induced piezoelectric anisotropy in untextured ferroelectric ceramics is investigated. It is found that the maximum piezoelectric response in the poled ceramics is obtained along a macroscopic nonpolar direction; and extrinsic contributions from preferred domain wall motions play a dominant role in piezoelectric anisotropy and enhancement in macroscopic nonpolar direction. (VIII) Stress effects on domain microstructure are investigated for the MPB-based ferroelectric polycrystals. It shows that stress alone cannot pole the sample, but can be utilized to reduce the strength of poling electric field. (IX) The effects of compressions on hysteresis loops and domain microstructures of MPB-based ferroelectric polycrystals are investigated. It shows that longitudinal piezoelectric coefficient can be enhanced by compressions, with the best value found when compression is about to initiate the depolarization process. / Ph. D.
24

Structure-Property Relationships of Multifeorric Materials: A Nano Perspective

Bai, Feiming 25 August 2006 (has links)
The integration of sensors, actuators, and control systems is an ongoing process in a wide range of applications covering automotive, medical, military, and consumer electronic markets. Four major families of ceramic and metallic actuators are under development: piezoelectrics, electrostrictors, magnetostrictors, and shape-memory alloys. All of these materials undergo at least two phase transformations with coupled thermodynamic order parameters. These transformations lead to complex domain wall behaviors, which are driven by electric fields (ferroelectrics), magnetic fields (ferromagnetics), or mechanical stress (ferroelastics) as they transform from nonferroic to ferroic states, contributing to the sensing and actuating capabilities. This research focuses on two multiferroic crystals, Pb(Mg1/3Nb2/3)O3-PbTiO3 and Fe-Ga, which are characterized by the co-existence and coupling of ferroelectric polarization and ferroelastic strain, or ferro-magnetization and ferroelastic strain. These materials break the conventional boundary between piezoelectric and electrostrictors, or magnetostrictors and shape-memory alloys. Upon applying field or in a poled condition, they yield not only a large strain but also a large strain over field ratio, which is desired and much benefits for advanced actuator and sensor applications. In this thesis, particular attention has been given to understand the structure-property relationships of these two types of materials from atomic to the nano/macro scale. X-ray and neutron diffraction were used to obtain the lattice structure and phase transformation characteristics. Piezoresponse and magnetic force microscopy were performed to establish the dependence of domain configurations on composition, thermal history and applied fields. It has been found that polar nano regions (PNRs) make significant contributions to the enhanced electromechanical properties of PMN-x%PT crystals via assisting intermediate phase transformation. With increasing PT concentration, an evolution of PNRï  PND (polar nano domains)-> micron-domains-> macro-domains was found. In addition, a domain hierarchy was observed for the compositions near a morphotropic phase boundary (MPB) on various length scales ranging from nanometer to millimeter. The existence of a domain hierarchy down to the nm scale fulfills the requirement of low domain wall energy, which is necessary for polarization rotation. Thus, upon applying an E-field along <001> direction(s) in a composition near the MPB, low symmetry phase transitions (monoclinic or orthorhombic) can easily be induced. For PMN-30%PT, a complete E-T (electric field vs temperature) diagram has been established. As for Fe-x at.% Ga alloys, short-range Ga-pairs serve as both magnetic and magnetoelastic defects, coupling magnetic domains with bulk elastic strain, and contributing to enhanced magnetostriction. Such short-range ordering was evidenced by a clear 2theta peak broadening on neutron scattering profiles near A2-DO3 phase boundary. In addition, a strong degree of preferred [100] orientation was found in the magnetic domains of Fe-12 at.%Ga and Fe-20 at.%Ga alloys with the A2 or A2+DO3 structures, which clearly indicates a deviation from cubic symmetry; however, no domain alignment was found in Fe-25 at.%Ga with the DO3 structure. Furthermore, an increasing degree of domain fluctuations was found during magnetization rotation, which may be related to short-range Ga-pairs cluster with a large local anisotropy constant, due to a lower-symmetry structure. / Ph. D.
25

Structure-Property Relations on Strain-Mediated Multiferroic Heterostructures

Gao, Min 20 November 2019 (has links)
Multiferroic thin-film heterostructures have attracted a great deal of attention due to the increasing demand for novel energy-efficient micro/nano-electronic devices. Both single phase multiferroic materials like BiFeO3 (BFO) thin films, and strain-mediated magnetoelectric (ME) nanocomposites, have the potential to fulfill a number of functional requirements in actual applications—principally, direct control of magnetization by the application of an electric field (E) and vice-versa. From the perspective of material science, however, it is essential to develop a fuller understanding of the complex fabrication-structure-property triangle relationship for these multiferroic thin films. Pulsed laser deposition (PLD) was used in this study to fabricate diverse epitaxial thin film heterostructures on top of single crystal substrates. The crystal structure, phase transition processes (amongst nanodomain distributions, dielectric phases, magnetic spin states, etc.), and various ME-related properties were characterized under different E or temperature environments. Resulting data enabled us to determine the structure-property relationships for a range of multiferroic systems. First, BFO-based heterostructures were studied. Epitaxial BFO thin films were deposited on top of (001)-oriented Pb(Mg1/3Nb2/3)O3-30PbTiO3 (PMN-30PT) single crystal substrates. The strain states of BFO and crystal structural phases were tunable by E applied on the PMN-30PT via both the in-plane and out-of-plane modes. The strain-mediated antiferromagnetic state changes of BFO were also studied using neutron diffraction spectroscopy under E. Then, CoFe2O4(CFO)/tetragonal BFO nanocomposites were successfully fabricated on top of (001)-oriented LaAlO3 single crystal substrates. The surface morphology, crystal structure, magnetic properties, and ME effects were evaluated and compared with CFO/rhombohedral BFO nanocomposites. To enhance the performance of ME heterostructures with PMN-PT substrates, PMN-30PT single crystals with nanograted electrodes were also studied, which evidenced an enhancement in piezoelectric properties and dielectric constant by 36.7% and 38.3%, respectively. X-ray diffraction reciprocal space mapping (RSM) was used to monitor E-induced changes in the apparent symmetry and domain distribution of near-surface regions for the nanograted PMN-30PT crystals. Finally, in order to add antiferroelectric thin films to the family of strain-mediated multiferroic nanocomposites, epitaxial antiferroelectric thin films were prepared. Epitaxial (Pb0.98La0.02)(Zr0.95Ti0.05)O3 (PLZT) thin films were deposited on differently oriented SrTiO3 single crystal substrates. A thickness dependent incommensurate/commensurate antiferroelectric-to-ferroelectric phase transition was identified. The crystal structure, phase transition characteristics and pathways, and energy storage behaviors from room temperature to 250 ℃ were studied, enabling a more systematic understanding of PLZT-based AFE epitaxial thin films. To summarize, a range of epitaxial thin films were prepared using PLD, whose crystal structures and multiferroic properties were related through the strain. Accordingly, properties such as dielectricity, antiferroelectricity, and antiferromagnetism could be adjusted by E. This study sheds further light on the potential for designing desirable strain-mediated multiferroic nano-/micro-devices in the future. / Doctor of Philosophy / As a general definition, the class of materials known as multiferroics possess more than one ferroic order parameter. Multiferroic thin-film heterostructures have attracted a great deal of attention due to the increasing demand for novel energy-efficient micro/nano-electronic devices. Both single phase multiferroic materials like BiFeO3 (BFO) thin films and strain-mediated magnetoelectric (ME) nanocomposites show significant potential for use in next-generation devices due to the fact that one can control magnetic properties via the application of an electric field (E) and vice-versa. From the perspective of material science, however, it is essential to develop a fuller understanding of the complex fabrication-structure-property triangle relationship for these multiferroic thin films. In this study, diverse epitaxial thin film heterostructures were fabricated on top of single crystal substrates. The crystal structure, phase transition processes (amongst nanodomain distributions, dielectric phases, magnetic spin states, etc.), and various ME-related properties were characterized under different E or temperature environments. Resulting data enabled us to determine the structure-property relationships for a range of multiferroic systems. First, BFO-based heterostructures were studied. Epitaxial BFO thin films were deposited on top of (001)-oriented Pb(Mg1/3Nb2/3)O3-30PbTiO3 (PMN-30PT) single crystal substrates. The strain states of BFO and crystal structural phases were tunable by E applied on the PMN-30PT via both the in-plane and out-of-plane modes. The strain-mediated antiferromagnetic state changes of BFO were studied using powerful neutron diffraction spectroscopy under E. Then, CoFe2O4(CFO)/tetragonal BFO nanocomposites were successfully fabricated on top of (001)-oriented LaAlO3 single crystal substrates. The surface morphology, crystal structure, magnetic properties, and ME effects were discussed and compared with CFO/rhombohedral BFO nanocomposites. To enhance the performance of ME heterostructures with PMN-PT substrates, PMN-PT single crystals with nanograted electrodes were also studied, which evidenced an enhancement in piezoelectric properties and dielectric constant by 36.7% and 38.3%, respectively. X-ray diffraction reciprocal space mapping (RSM) technique was used to monitor E-induced changes in the apparent symmetry and domain distribution of near-surface regions for nanograted PMN-PT crystals. Finally, in order to add antiferroelectric thin films to the family of strain-mediated multiferroic nanocomposites, epitaxial antiferroelectric thin films were prepared. Epitaxial (Pb0.98La0.02)(Zr0.95Ti0.05)O3 (PLZT) thin films were deposited on differently oriented SrTiO3 substrates. A thickness dependent incommensurate antiferroelectric-to-ferroelectric phase transition was identified. The crystal structure, phase transition characteristics and pathways, and energy storage behaviors from room temperature to 250 ℃ were studied, enabling a more systematic understanding of PLZT-based AFE epitaxial thin films. To summarize, a range of epitaxial perovskite thin films were prepared, whose crystal structures and multiferroic properties were related through the strain. Accordingly, the properties such as dielectricity, antiferroelectricity, and antiferromagnetism could be adjusted by E. This study sheds further light on the potential for designing desirable strain-mediated multiferroic nano-/micro-devices in the future.
26

[en] GENARCH: A MODEL-BASED PRODUCT DERIVATION TOOL / [pt] GENARCH: UMA FERRAMENTA BASEADA EM MODELOS PARA DERIVAÇÃO DE PRODUTOS DE SOFTWARE

ELDER JOSE REIOLI CIRILO 29 October 2008 (has links)
[pt] Este trabalho apresenta uma ferramenta baseada em modelos para derivação de produtos de LPSs, denominada GenArch. O objetivo principal da ferramenta é permitir que a comunidade de desenvolvimento de software tradicional, utilize conceitos e fundamentos de abordagens de LPSs na produção de seus sistemas ou partes de seus sistemas sem a necessidade do entendimento de modelos e conceitos complexos. A abordagem implementada pela ferramenta foi elaborada com base em fundamentos do desenvolvimento dirigido por modelos. Centrada na definição de três modelos (características, implementação e configuração), a ferramenta permite a derivação automática de produtos ou frameworks existentes. O trabalho também define um conjunto específico de anotações Java que possibilitam a geração automática dos modelos de derivação a partir dos elementos de implementação da arquitetura de uma LPS. A plataforma Eclipse e as tecnologia EMF e openArchitectureWare foram utilizadas como base para a implementação da ferramenta. Uma extensão da ferramenta que atende especificamente aos modelos de componente Spring e OSGi, também é proposta nessa dissertação. Tal extensão permite a instanciação automática da LPS e aplicações através de diferentes tipos de customizações, variando da configuração fina de propriedades de componentes até a seleção automática de quais componentes irão compor o produto final. Como parte de validação da abordagem, a ferramenta foi utilizada na derivação automática de três diferentes estudos de caso: (i) o framework JUnit; (ii) uma LPS de jogos J2ME; e (iii) uma aplicação web baseada em serviços. Diversas lições aprendidas e resultados do uso da ferramenta nestes três diferentes cenários são também apresentadas. / [en] This work presents a model-based tool for product derivation, called GenArch, which aims to enable the mainstream software developer community to use the concepts and foundations of the SPL approach, without the need to understand complex concepts or models. The tool approach is build on top of model-driven development techniques. It is centered on the definition of three models (feature, implementation and configuration models), which enable the automatic instantiation of software product lines (SPLs) or frameworks. A set of specific Java annotations are also defined to allow generating automatically many of the models, based on existing implementations elements of SPL architectures. The Eclipse platform, and EMF and openArchitectureWare technologies are used as the base for the implementation of the tool. The dissertation also presents a GenArch extension that addresses the new abstractions provided by the Spring and OSGi component models. Different kinds of customizations are provided by this extension varying from fine-grained configuration of component properties to the automatic selection of components that will compose the final product. As part of the approach validation, the tool was used in the derivation of three case studies: (i) JUnit framework; (ii) a J2ME games SPL; (iii) a service oriented Web application. Several lessons learned and discussions resulting from the use of the tool also are described.
27

Integración de técnicas de análisis de dominio con especificaciones RSL

Felice, Laura 20 August 2013 (has links)
Los métodos formales han alcanzado un uso más masivo en la construcción de sistemas reales, ya que ayudan a aumentar la calidad del software y la fiabilidad. Las especificaciones formales pueden ser usadas a lo largo de todo el ciclo de vida del desarrollo de software y también este desarrollo puede ser automatizado por medio de herramientas de amplia variedad y propósito como model checking, verificación, animación, generación de datos para testing, como también refinamiento de especificaciones a implementaciones. Cuando las especificaciones se usan en etapas iniciales del proceso, se ayuda a revelar ambigüedades, omisiones, inconsistencias, errores o interpretaciones erróneas que podrían ser detectados durante pruebas costosas y en las fases de depuración. Sin embargo, las especificaciones formales no son muy familiares para los stakeholders, cuya participación activa es crucial en los primeros estados del proceso de desarrollo de software para entender y comunicar un problema. Estas actividades son especialmente útiles en el análisis de dominio, pues su primera etapa consiste en capturar el conocimiento de un dominio en particular, lo que hace necesario disponer de un modelo que sea comprensible por los ingenieros de software y expertos del dominio. Para contribuir a reducir esta brecha, se trabaja en la integración de una fase de análisis de dominio con el método formal de desarrollo de software RAISE, a fin de especificar una familia de sistemas para producir aplicaciones cualitativas y fiables en un dominio, promover la reutilización temprana y reducción de los costos de desarrollo.
28

A Domain Framework Approach Offering Default Relations

Kargi, Ersin Eray 01 October 2005 (has links) (PDF)
In order to use components that are developed for a domain, domain knowledge is required. If the default relations in a domain are offered by a framework, this can be a starting point for the application engineer as an important kind of domain knowledge. A generic design for creating and saving a domain is implemented in this thesis. This approach starts with creating a domain from components and relations among these components. The relations and components are saved once and used several times. In addition, this generic design helps for code generation by using components. A framework for this design is implemented and applied for GIS domain. A basic code generation approach is also implemented in this framework for demonstration purposes. This framework can be used by domain engineers in order to create a domain and by application engineers to develop custom applications. It has the ability to offer default relations and helps creating new relations between components. Parameters and sequence of function calls can be defined by using a GUI. All the relations including default and userdefined ones can be used for code generation. COSECASE, which offers a tool for component-oriented design is extended with domain operations such as creating domain, saving domain, loading domain, and generating domain code. As the starting point, domain analysis for GIS domain is completed to define the domain. Then the components that have been implemented for GIS domain and relations between these components are saved within the framework. Moreover, some basic applications are generated by using this framework in the GIS domain. Also a sample domain is created to prove that our approach can be applied to any domain. The relations in this sample domain are saved in the framework and same basic applications are generated.
29

Phase transformations in highly electrostrictive and magnetostrictive crystals: structural heterogeneity and history dependent phase stability

Cao, Hu 10 October 2008 (has links)
Ferroelectric and ferromagnetic materials have been extensively studied for potential applications in sensors, actuators and transducers. Highly electrostrictive (1-x)Pb(Mg<sub>1/3</sub>Nb<sub>2/3</sub>)-xPbTiO₃ (PMN-xPT) and highly magnetostrictive Fe-xat.%Ga are two such novel materials. Both materials systems have chemical disorders and structural inhomogeneity on a microscale, giving rise to an interesting diversity of crystal structures and novel macroscopic physical properties, which are dependent on thermal and electrical histories of the crystals. In this thesis, I have to investigated phase transformations in these two systems under thermal and field (electric/magnetic) histories, using x-ray and neutron scattering techniques. In PMN-xPT crystals, x-ray and neutron diffractions were performed along the different crystallographic orientations and for different thermal and electrical histories. Various intermediate monoclinic (M) phases that structurally “bridge” the rhombohedral (R) and tetragonal (T) ones across a morphtropic phase boundary (MPB) have been observed. Systematic investigations of (001) and (110) electric (E) field-temperature phase diagrams of PMN-xPT crystals have demonstrated that the phase stability of PMN-xPT crystals is quite fragile: depending not only on modest changes in E (≤ 0.5kV/cm), but also on the direction along which E is applied. Structurally bridging monoclinic Mc or orthorhombic (O) phases were found to be associated with the T phase, whereas the monoclinic Ma or Mb phases bridged the Cubic (C) and R ones. In addition, neutron inelastic scattering was performed on PMN-0.32PT to study the dynamic origin of the MPB. Data were obtained between 100 and 600 K under various E applied along the cubic [001] direction. The lowest frequency zone-center, transverse optic phonon was strongly damped and softened over a wide temperature range, but started to recover on cooling into the T phase at the Curie temperature (TC). Comparisons of my findings with prior ones for PMN and PMN-0.60PT suggest that the temperature dependence and energy scales of the soft mode dynamics in PMN-xPT are independent of PT concentration below the MPB, and that the MPB may be defined in composition space x when TC matches the temperature at which the soft mode frequency begins to recover. High-resolution x-ray studies then showed that the C–T phase boundary shifted to higher temperatures under E by an expected amount within the MPB region: suggesting an unusual instability within the apparently cubic phase at the MPB. In Fe-xat.%Ga alloys, the addition of Ga atoms into the b.c.c. α-Fe phase also results in diversity of crystal structures and structural inhomogeneity, which are likely the source of its unusual magneto-elastic properties. I have carefully investigated decomposition of Fe-xat.%Ga alloys subjected to different thermal treatments by x-ray and neutron diffraction for 12 < x < 25. Quenching was found to suppress the formation of a DO₃ structure in favor of a high-temperature disordered bcc (A2) one. By contrast, annealing produced a two-phase mixture of A2 + DO₃ for 14 < x < 20 and a fully DO₃ phase for x = 25. A splitting of the (2 0 0) and (0 0 2) Bragg peaks observed along the respective transverse directions indicated that Fe-xat.%Ga –crystals' are composed of several crystal grain orientations (or texture structures), which are slightly tilted with respect to each other. In order to investigate the local structural distortions and heterogeneities, neutron diffuse scattering was performed on Fe-x%Ga alloys for different thermal conditions. Diffuse scattering around a (100) superlattice reflection was found for 14 < x < 22 in the furnace-cooled condition, indicative of short-range ordered DO₃ nanoprecipitates in an A2 matrix. This diffuse intensity had an asymmetric radial contour and an off-centering. Analysis (x=19) revealed two broad peaks with c/a–1.2: indicating that the DO₃-like nanoprecipitates are not cubic, but rather of lower symmetry with a large elastic strain. The strongest diffuse scattering was observed for x=19, which correspondingly had maximum magnetostriction: indicating a structural origin for enhanced magnetostriction. / Ph. D.
30

Software Product Line:Survey of Tools

Munir, Qaiser, Shahid, Muhammad January 2010 (has links)
<p>software product line is a set of software-intensive systems that share a common, managed set of features satisfying the specificneeds of a particular market segment or mission. The main attractive part of SPL is developing a set of common assets which includes requirements, design, test plans, test cases, reusable software components and other artifacts. Tools for the development of softwareproduct line are very few in number. The purpose of these tools is to support the creation, maintenance and using different versions ofproduct line artifacts. This requires a development environment that supports the management of assets and product development,processes and sharing of assets among different products.</p><p>The objective of this master thesis is to investigate the available tools which support Software Product Line process and itsdevelopment phases. The work is carried out in two steps, in the first step available Software Product Line tools are explored and a list of tools is prepared, managed and a brief introduction of each tool is presented. The tools are classified into different categoriesaccording to their usage, relation between the tools is established for better organization and understanding. In the second step, two tools Pure::variant and MetaEdit+ are selected and the quality factors such as Usability, Performance, Reliability, MemoryConsumption and Capacity are evaluated.</p>

Page generated in 0.0914 seconds