• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Probabilistic relational models learning from graph databases / Apprentissage des modèles probabilistes relationnels à partir des bases de données graphe

El Abri, Marwa 02 October 2018 (has links)
Historiquement, les Modèles Graphiques Probabilistes (PGMs) sont une solution d’apprentissage à partir des données incertaines et plates, appelées aussi données propositionnelles ou représentations attribut-valeur. Au début des années 2000, un grand intérêt a été adressé au traitement des données relationnelles présentant un grand nombre d’objets participant à des différentes relations. Les Modèles Probabilistes Relationnels (PRMs) présentent une extension des PGMs pour le contexte relationnel. Avec l’évolution rapide issue de l’internet, des innovations technologiques et des applications web, les données sont devenues de plus en plus variées et complexes. D’où l’essor du Big Data. Plusieurs types de bases de données ont été créés pour s’adapter aux nouvelles caractéristiques des données, dont les plus utilisés sont les bases de données graphe. Toutefois, tous les travaux d’apprentissage des PRMs sont consacrés à apprendre à partir des données bien structurées et stockées dans des bases de données relationnelles. Les bases de données graphe sont non structurées et n’obéissent pas à un schéma bien défini. Les arcs entre les noeuds peuvent avoir des différentes signatures. En effet, les relations qui ne correspondent pas à un modèle ER peuvent exister dans l'instance de base de données. Ces relations sont considérées comme des exceptions. Dans ce travail de thèse, nous nous intéressons à ce type de bases de données. Nous étudions aussi deux types de PRMs à savoir, Direct Acyclic Probabilistic Entity Relationship (DAPER) et chaines de markov logiques (MLNs). Nous proposons deux contributions majeures. Premièrement, Une approche d’apprentissage des DAPERs à partir des bases de données graphe partiellement structurées. Une deuxième approche consiste à exploiter la logique de premier ordre pour apprendre les DAPERs en utilisant les MLNs pour prendre en considération les exceptions qui peuvent parvenir lors de l’apprentissage. Nous menons une étude expérimentale permettant de comparer nos méthodes proposées avec les approches déjà existantes. / Historically, Probabilistic Graphical Models (PGMs) are a solution for learning from uncertain and flat data, also called propositional data or attributevalue representations. In the early 2000s, great interest was addressed to the processing of relational data which includes a large number of objects participating in different relations. Probabilistic Relational Models (PRMs) present an extension of PGMs to the relational context. With the rise of the internet, numerous technological innovations and web applications are driving the dramatic increase of various and complex data. Consequently, Big Data has emerged. Several types of data stores have been created to manage this new data, including the graph databases. Recently there has been an increasing interest in graph databases to model objects and interactions. However, all PRMs structure learning use wellstructured data that are stored in relational databases. Graph databases are unstructured and schema-free data stores. Edges between nodes can have various signatures. Since, relationships that do not correspond to an ER model could be depicted in the database instance. These relationships are considered as exceptions. In this thesis, we are interested by this type of data stores. Also, we study two kinds of PRMs namely, Direct Acyclic Probabilistic Entity Relationship (DAPER) and Markov Logic Networks (MLNs). We propose two significant contributions. First, an approach to learn DAPERs from partially structured graph databases. A second approach consists to benefit from first-order logic to learn DAPERs using MLN framework to take into account the exceptions that are dropped during DAPER learning. We are conducting experimental studies to compare our proposed methods with existing approaches.
2

Fédération de données semi-structurées avec XML

Dang-Ngoc, Tuyet-Tram 18 June 2003 (has links) (PDF)
Contrairement aux données traditionnelles, les données semi-structurées sont irrégulières : des données peuvent manquer, des concepts similaires peuvent être représentés par différents types de données, et les structures même peuvent être mal connues. Cette absence de schéma prédéfini, permettant de tenir compte de toutes les données du monde extérieur, présente l'inconvénient de complexifier les algorithmes d'intégration des données de différentes sources. Nous proposons une architecture de médiation basée entièrement sur XML. L'objectif de cette architecture de médiation est de fédérer des sources de données distribuées de différents types. Elle s'appuie sur le langage XQuery, un langage fonctionnel conçu pour formuler des requêtes sur des documents XML. Le médiateur analyse les requêtes exprimées en XQuery et répartit l'exécution de la requête sur les différentes sources avant de recomposer les résultats. L'évaluation des requêtes doit se faire en exploitant au maximum les spécificités des données et permettre une optimisation efficace. Nous décrivons l'algèbre XAlgebre à base d'opérateurs conçus pour XML. Cette algèbre a pour but de construire des plans d'exécution pour l'évaluation de requêtes XQuery et traiter des tuples d'arbres XML. Ces plans d'exécution doivent pouvoir être modélisés par un modèle de coût et celui de coût minimum sera sélectionné pour l'exécution. Dans cette thèse, nous définissons un modèle de coût pour les données semi-structurées adapté à notre algèbre. Les sources de données (SGBD, serveurs Web, moteur de recherche) peuvent être très hétérogènes, elles peuvent avoir des capacités de traitement de données très différentes, mais aussi avoir des modèles de coût plus ou moins définis. Pour intégrer ces différentes informations dans l'architecture de médiation, nous devons déterminer comment communiquer ces informations entre le médiateur et les sources, et comment les intégrer. Pour cela, nous utilisons des langages basés sur XML comme XML-Schema et MathML pour exporter les informations de métadonnées, de formules de coûts et de capacité de sources. Ces informations exportées sont communiquées par l'intermédiaire d'une interface applicative nommée XML/DBC. Enfin, des optimisations diverses spécifiques à l'architecture de médiation doivent être considérées. Nous introduisons pour cela un cache sémantique basé sur un prototype de SGBD stockant efficacement des données XML en natif.
3

Federation de données semi-structurées avec XML

Dang Ngoc, Tuyet Tram 10 June 2003 (has links) (PDF)
Contrairement aux données traditionnelles, les données semi-structurées<br />sont irrégulières : des données peuvent manquer, des concepts<br />similaires peuvent être représentés par différents types de données,<br />et les structures même peuvent être mal connues. Cette absence <br />de schéma prédéfini, permettant de tenir compte de toutes les données<br />du monde extérieur, présente l'inconvénient de complexifier les<br />algorithmes d'intégration des données de différentes sources.<br /><br />Nous proposons une architecture de médiation basée entièrement sur XML.<br />L'objectif de cette architecture de médiation est de fédérer des sources de<br />données distribuées de différents types.<br />Elle s'appuie sur le langage XQuery, un langage fonctionnel<br />conçu pour formuler des requêtes sur des documents XML. Le médiateur analyse<br />les requêtes exprimées en XQuery et répartit l'exécution de la requête<br />sur les différentes sources avant de recomposer les résultats.<br /><br />L'évaluation des requêtes doit se faire en exploitant au maximum les<br />spécificités des données et permettre une optimisation efficace.<br />Nous décrivons l'algèbre XAlgebre à base d'opérateurs conçus<br />pour XML. Cette algèbre a pour but de construire des plans d'exécution pour<br />l'évaluation de requêtes XQuery et traiter des tuples d'arbres XML.<br /><br />Ces plans d'exécution doivent pouvoir être modélisés par un modèle<br />de coût et celui de coût minimum sera sélectionné pour l'exécution. <br />Dans cette thèse, nous définissons un modèle de coût pour les données<br />semi-structurées adapté à notre algèbre.<br /><br />Les sources de données (SGBD, serveurs Web, moteur de recherche)<br />peuvent être très hétérogènes, elles peuvent avoir des<br />capacités de traitement de données très différentes, mais aussi avoir<br />des modèles de coût plus ou moins définis. <br />Pour intégrer ces différentes informations dans<br />l'architecture de médiation, nous devons déterminer comment communiquer<br />ces informations entre le médiateur et les sources, et comment les intégrer.<br />Pour cela, nous utilisons des langages basés sur XML comme XML-Schema et MathML<br />pour exporter les informations de métadonnées, de formules de coûts<br />et de capacité de sources.<br />Ces informations exportées sont communiquées par l'intermédiaire d'une interface<br />applicative nommée XML/DBC.<br /><br />Enfin, des optimisations diverses spécifiques à l'architecture de médiation<br />doivent être considérées. Nous introduisons pour cela un cache sémantique<br />basé sur un prototype de SGBD stockant efficacement des données XML<br />en natif.
4

An Efficient Framework for Processing and Analyzing Unstructured Text to Discover Delivery Delay and Optimization of Route Planning in Realtime / Un framework efficace pour le traitement et l'analyse des textes non structurés afin de découvrir les retards de livraison et d'optimiser la planification de routes en temps réel

Alshaer, Mohammad 13 September 2019 (has links)
L'Internet des objets, ou IdO (en anglais Internet of Things, ou IoT) conduit à un changement de paradigme du secteur de la logistique. L'avènement de l'IoT a modifié l'écosystème de la gestion des services logistiques. Les fournisseurs de services logistiques utilisent aujourd'hui des technologies de capteurs telles que le GPS ou la télémétrie pour collecter des données en temps réel pendant la livraison. La collecte en temps réel des données permet aux fournisseurs de services de suivre et de gérer efficacement leur processus d'expédition. Le principal avantage de la collecte de données en temps réel est qu’il permet aux fournisseurs de services logistiques d’agir de manière proactive pour éviter des conséquences telles que des retards de livraison dus à des événements imprévus ou inconnus. De plus, les fournisseurs ont aujourd'hui tendance à utiliser des données provenant de sources externes telles que Twitter, Facebook et Waze, parce que ces sources fournissent des informations critiques sur des événements tels que le trafic, les accidents et les catastrophes naturelles. Les données provenant de ces sources externes enrichissent l'ensemble de données et apportent une valeur ajoutée à l'analyse. De plus, leur collecte en temps réel permet d’utiliser les données pour une analyse en temps réel et de prévenir des résultats inattendus (tels que le délai de livraison, par exemple) au moment de l’exécution. Cependant, les données collectées sont brutes et doivent être traitées pour une analyse efficace. La collecte et le traitement des données en temps réel constituent un énorme défi. La raison principale est que les données proviennent de sources hétérogènes avec une vitesse énorme. La grande vitesse et la variété des données entraînent des défis pour effectuer des opérations de traitement complexes telles que le nettoyage, le filtrage, le traitement de données incorrectes, etc. La diversité des données - structurées, semi-structurées et non structurées - favorise les défis dans le traitement des données à la fois en mode batch et en temps réel. Parce que, différentes techniques peuvent nécessiter des opérations sur différents types de données. Une structure technique permettant de traiter des données hétérogènes est très difficile et n'est pas disponible actuellement. En outre, l'exécution d'opérations de traitement de données en temps réel est très difficile ; des techniques efficaces sont nécessaires pour effectuer les opérations avec des données à haut débit, ce qui ne peut être fait en utilisant des systèmes d'information logistiques conventionnels. Par conséquent, pour exploiter le Big Data dans les processus de services logistiques, une solution efficace pour la collecte et le traitement des données en temps réel et en mode batch est essentielle. Dans cette thèse, nous avons développé et expérimenté deux méthodes pour le traitement des données: SANA et IBRIDIA. SANA est basée sur un classificateur multinomial Naïve Bayes, tandis qu'IBRIDIA s'appuie sur l'algorithme de classification hiérarchique (CLH) de Johnson, qui est une technologie hybride permettant la collecte et le traitement de données par lots et en temps réel. SANA est une solution de service qui traite les données non structurées. Cette méthode sert de système polyvalent pour extraire les événements pertinents, y compris le contexte (tel que le lieu, l'emplacement, l'heure, etc.). En outre, il peut être utilisé pour effectuer une analyse de texte sur les événements ciblés. IBRIDIA a été conçu pour traiter des données inconnues provenant de sources externes et les regrouper en temps réel afin d'acquérir une connaissance / compréhension des données permettant d'extraire des événements pouvant entraîner un retard de livraison. Selon nos expériences, ces deux approches montrent une capacité unique à traiter des données logistiques / Internet of Things (IoT) is leading to a paradigm shift within the logistics industry. The advent of IoT has been changing the logistics service management ecosystem. Logistics services providers today use sensor technologies such as GPS or telemetry to collect data in realtime while the delivery is in progress. The realtime collection of data enables the service providers to track and manage their shipment process efficiently. The key advantage of realtime data collection is that it enables logistics service providers to act proactively to prevent outcomes such as delivery delay caused by unexpected/unknown events. Furthermore, the providers today tend to use data stemming from external sources such as Twitter, Facebook, and Waze. Because, these sources provide critical information about events such as traffic, accidents, and natural disasters. Data from such external sources enrich the dataset and add value in analysis. Besides, collecting them in real-time provides an opportunity to use the data for on-the-fly analysis and prevent unexpected outcomes (e.g., such as delivery delay) at run-time. However, data are collected raw which needs to be processed for effective analysis. Collecting and processing data in real-time is an enormous challenge. The main reason is that data are stemming from heterogeneous sources with a huge speed. The high-speed and data variety fosters challenges to perform complex processing operations such as cleansing, filtering, handling incorrect data, etc. The variety of data – structured, semi-structured, and unstructured – promotes challenges in processing data both in batch-style and real-time. Different types of data may require performing operations in different techniques. A technical framework that enables the processing of heterogeneous data is heavily challenging and not currently available. In addition, performing data processing operations in real-time is heavily challenging; efficient techniques are required to carry out the operations with high-speed data, which cannot be done using conventional logistics information systems. Therefore, in order to exploit Big Data in logistics service processes, an efficient solution for collecting and processing data in both realtime and batch style is critically important. In this thesis, we developed and experimented with two data processing solutions: SANA and IBRIDIA. SANA is built on Multinomial Naïve Bayes classifier whereas IBRIDIA relies on Johnson's hierarchical clustering (HCL) algorithm which is hybrid technology that enables data collection and processing in batch style and realtime. SANA is a service-based solution which deals with unstructured data. It serves as a multi-purpose system to extract the relevant events including the context of the event (such as place, location, time, etc.). In addition, it can be used to perform text analysis over the targeted events. IBRIDIA was designed to process unknown data stemming from external sources and cluster them on-the-fly in order to gain knowledge/understanding of data which assists in extracting events that may lead to delivery delay. According to our experiments, both of these approaches show a unique ability to process logistics data. However, SANA is found more promising since the underlying technology (Naïve Bayes classifier) out-performed IBRIDIA from performance measuring perspectives. It is clearly said that SANA was meant to generate a graph knowledge from the events collected immediately in realtime without any need to wait, thus reaching maximum benefit from these events. Whereas, IBRIDIA has an important influence within the logistics domain for identifying the most influential category of events that are affecting the delivery. Unfortunately, in IBRIRDIA, we should wait for a minimum number of events to arrive and always we have a cold start. Due to the fact that we are interested in re-optimizing the route on the fly, we adopted SANA as our data processing framework

Page generated in 0.0991 seconds