• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 9
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 41
  • 41
  • 25
  • 20
  • 10
  • 9
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Effects of an Adenosine A<sub>2A</sub> Agonist on the Rewarding Associative Properties of Nicotine and Neural Plasticity in a Rodent Model of Schizophrenia

Gill, Wesley Drew, Shelton, Heath W., Burgess, Katherine C., Brown, Russell W. 01 January 2020 (has links)
Background: Adenosine A2a receptors form a mutually inhibitory heteromeric complex with dopamine D2 receptors such that each receptor exhibits lower sensitivity to its agonist after the opposing receptor agonist is bound. This study analyzed the effects of CGS 21680, an adenosine A2A agonist, on nicotine conditioned place preference (CPP) in adolescence using a rodent model of schizophrenia (SZ). Methods: Rats were treated from postnatal day (P) 1 to P21 with saline or the dopamine D2/D3 agonist quinpirole (NQ treatment) and raised to P41. After an initial preference test, rats were conditioned with saline or nicotine (0.6 mg/kg base) from P43 to P51. CGS 21680 (0.03 or 0.09 mg/kg) was given 15 minutes before nicotine was administered. The post-conditioning test was administered on P52. On P53, the nucleus accumbens (NAcc) was analyzed for brain-derived neurotrophic factor (BDNF) and glial cell-lined neurotrophic factor (GDNF). Results: Results revealed that NQ treatment enhanced nicotine CPP, and both doses of CGS 21680 alleviated this enhancement. Nicotine also resulted in a CPP in controls, which was alleviated by both doses of CGS 21680. BDNF closely followed the behavioral results: CGS 21680 alleviated the enhancement in NAcc BDNF in NQ-treated animals, and eliminated the increase in NAcc BDNF produced by nicotine in controls. NQ-treated animals conditioned to nicotine resulted in an increase of NAcc GDNF, but this was eliminated by CGS 21680. Both BDNF and GDNF correlated with CPP performance. Conclusions: Results revealed that an adenosine A2A agonist decreased the rewarding aspects of nicotine and its accompanying neural plasticity changes in a model of SZ.
12

Exploring functional genetic variants in genes involved in mental disorders

Zhang, Ying 23 August 2007 (has links)
No description available.
13

PHARMACOLOGICAL IMPLICATIONS OF ADENOSINE 2A RECEPTOR- DOPAMINE TYPE 2 RECEPTOR HETEROMERIZATION

Hatcher-Solis, Candice N 01 January 2016 (has links)
G protein-coupled receptors (GPCRs) are heptahelical, transmembrane proteins that mediate a plethora of physiological functions by binding ligands and releasing G proteins that interact with downstream effectors. GPCRs signal as monomers, complexes of the same receptor subtype (homomers), or complexes of different receptor subtypes (heteromers). Recently, heteromeric GPCR complexes have become attractive targets for drug development since they exhibit distinct signaling and cell-specific localization from their homomeric counterparts. Yet, the effect of heteromerization on the pharmacology of many GPCR homomers remains unknown. Therefore, we have undertaken the task to examine the effect of heteromerization on Gs signaling through the adenosine 2A receptor (A2AR) and Gi signaling through the dopamine type 2 receptor (D2R) since the A2AR-D2R heteromer is an emerging therapeutic target for Parkinson’s disease (PD). We examined the effect of heteromerization on A2AR and D2R homomeric signaling using electrophysiology and the Xenopus laevis oocyte heterologous expression system. G protein-coupled inwardly rectifying potassium channels (GIRKs) were used as reporters for Gi signaling because activation leads to direct Gbeta-gamma (Gβγ)-mediated stimulation of the GIRK current. We also coupled GIRK channels to Gs signaling by overexpressing Gαs and signaling throughGαsβγ. Our electrophysiological assay is innovative because it allows us to optimize the conditions of heteromerization and directly observe GPCR signaling at the G protein level. Our data demonstrate that heteromer formation alone decreases dopamine-elicited Gi signaling through the D2R and CGS-21680-elicited Gs signaling through the A2AR. Furthermore, this reciprocal antagonism was predominately due to changes in efficacy versus potency. We also examined crosstalk observing that applying agonists or antagonists to the adjacent receptor further modulate this inhibition with the combination of agonists and antagonists relieving inhibition. Mutating the A2AR-D2R heteromer interface abrogated all of the aforementioned ligand-induced effects on G protein signaling through the A2AR-D2R heteromer. We are currently aiming to validate our results from the oocyte experiments with an in vivo model. Our data further elucidate the effect of various ligands on G protein signaling through the A2AR- D2R heteromer, which may facilitate future studies that examine A2AR-D2R heteromer signaling.
14

Neonatal Quinpirole Treatment Produces Prepulse Inhibition Deficits in Adult Male and Female Rats

Maple, Amanda M., Smith, Katherine J., Perna, Marla K., Brown, Russell W. 01 October 2015 (has links)
We have shown that repeated neonatal quinpirole (QUIN; a dopamine D2-like receptor agonist) treatment in rats produces long-lasting supersensitization of dopamine D2 receptors that persists into adulthood but without producing a change in receptor number. The current study was designed to analyze the effects of neonatal QUIN on auditory sensorimotor gating as measured through prepulse inhibition (PPI). Male and female Sprague–Dawley rats were neonatally treated with QUIN (1mg/kg) or saline from postnatal days (P)1–21. At P60, the number of yawns was recorded for a 1h period in response to an acute QUIN (1mg/kg) injection as yawning is a D2-like receptor mediated behavioral event. Five days later, rats began (PPI) behavioral testing in two phases. In phase I, three different prepulse intensities (73, 76, and 82dB) were administered 100-ms before a 115dB pulse on 10 consecutive days. In phase II, three different interstimulus intervals (ISI; 50, 100, and 150ms) were inserted between the 73 or 76dB prepulse and 115dB pulse over 10 consecutive days of testing. A PPI probe trial was administered at the end of each phase after an acute 100μg/kgi.p. injection of QUIN to all animals. Replicating previous work, neonatal QUIN enhanced yawning compared to controls, verifying D2 receptor supersensitization. Regarding PPI, neonatal QUIN resulted in deficits across both phases of testing persistent across all testing days. Probe trial results revealed that acute QUIN treatment resulted in more robust PPI deficits in neonatal QUIN animals, although this deficit was related to prepulse intensity and ISI. These findings provide evidence that neonatal QUIN treatment results in deficits of auditory sensorimotor gating in adulthood as measured through PPI.
15

Decoding the signaling of the D2R-2AR heteromer: relevance to schizophrenia

Huang, Miao 01 January 2018 (has links)
Schizophrenia is a severe mental disorder affecting ~1% of world population. Two G protein coupled receptors (GPCRs): Gi-coupled dopamine D2 receptor (D2R), and Gq-coupled serotonin 2A receptor (2AR), are targeted by the typical and atypical antipsychotic drugs to treat schizophrenia. These two receptors have been shown to co-localize in brain regions relevant to schizophrenia, including the ventral tegmental area (VTA), striatum, and prefrontal cortex (PFC). Studies in our lab characterized the integrated signaling of the D2R-2AR heteromer and found that both the Gi activity of D2R and the Gq activity of 2AR were potentiated in response to dopamine (DA) and serotonin (5-HT), whereas the potency of the typical antipsychotic drug (APD) haloperidol antagonizing Gi and Gq signaling was also enhanced. Using a peptide mimicking the transmembrane (TM) domain 5 of D2R, we showed disruption of the formation and function of the D2R-2AR heteromer in heterologous systems and ex vivo brain slices. Our functional and mutagenesis data suggested that D2R and 2AR heteromerize though a symmetric TM5,6-TM5,6 interface, and a network of Pi-Pi stacking interaction among eight conserved aromatic residues of D2R and 2AR may underlie the mechanism for the functional cross-talk between D2R and 2AR. Based on these results, we built a structural model for the D2R-2AR heteromer recapitulating its functional cross-talk characteristics. We are presently pursuing behavioral experiments to investigate the effectiveness of antipsychotic drugs on the function of the D2R-2AR heteromer in animal models of psychosis. Our overall study shows a dual role of the D2R-2AR heteromer in schizophrenia-associated psychosis and sheds light on the development of future therapeutic drugs for schizophrenia and other psychotic diseases.
16

Genetic Modifiers of Caffeine Consumption and Risk of Myocardial Infarction

Da Costa, Laura Anne 23 August 2011 (has links)
The variability in caffeine consumption and inconsistencies among studies linking caffeine to heart disease may be explained by genetic variation. Caffeine antagonizes adenosine receptors with downstream effects on dopamine and serotonin. The objectives of this thesis were to determine whether the DRD2 957C>T or HTR2A 102C>T polymorphisms are associated with caffeine consumption or modify the association between coffee consumption and risk of myocardial infarction (MI). DRD2 genotype was associated with caffeine consumption among non-smokers and CYP1A2 -163C allele carriers. HTR2A genotype was associated with caffeine consumption among non-smokers and subjects with the ADORA2A TT genotype. Neither polymorphism modified the association between coffee consumption and risk of MI; however, a significant coffee x HTR2A interaction was seen among subjects with the CYP1A2 -163C allele. The results suggest caffeine’s reinforcing effects may be mediated by the dopamine and serotonin receptors and implicate serotonin in caffeine’s effect on risk of MI.
17

Genetic Modifiers of Caffeine Consumption and Risk of Myocardial Infarction

Da Costa, Laura Anne 23 August 2011 (has links)
The variability in caffeine consumption and inconsistencies among studies linking caffeine to heart disease may be explained by genetic variation. Caffeine antagonizes adenosine receptors with downstream effects on dopamine and serotonin. The objectives of this thesis were to determine whether the DRD2 957C>T or HTR2A 102C>T polymorphisms are associated with caffeine consumption or modify the association between coffee consumption and risk of myocardial infarction (MI). DRD2 genotype was associated with caffeine consumption among non-smokers and CYP1A2 -163C allele carriers. HTR2A genotype was associated with caffeine consumption among non-smokers and subjects with the ADORA2A TT genotype. Neither polymorphism modified the association between coffee consumption and risk of MI; however, a significant coffee x HTR2A interaction was seen among subjects with the CYP1A2 -163C allele. The results suggest caffeine’s reinforcing effects may be mediated by the dopamine and serotonin receptors and implicate serotonin in caffeine’s effect on risk of MI.
18

The effects of some typical and atypical neuroleptics on gene regulation : implications for the treatment of schizophrenia

Chlan-Fourney, Jennifer 01 January 2000 (has links)
The mechanisms by which antipsychotics (neuroleptics) produce their therapeutic effects in schizophrenia are largely unknown. Although neuroleptic efficacy is attributed to central dopamine D2 and/or serotonin 5-HT2 receptor antagonism, clinical improvements in schizophrenia are not seen until two or three weeks after daily neuroleptic administration. The mechanisms underlying the neuroleptic response must therefore occur downstream from initial receptor blockade and be a consequence of chronic neurotransmitter receptor blockade. The goal of the present study was to use neuroleptics with varied dopamine vs. serotonergic receptor blocking profiles to elucidate some of these intracellular post receptor mechanisms. Since the final steps of both dopamine and serotonin synthesis require the enzyme aromatic L-amino acid decarboxylase (AADC), the effects of neuroleptics on AADC gene (mRNA) expression were examined in PC12 cells and compared to their effects on the synthetic enzyme tyrosine hydroxylase (TH) and ' c-fos' (an early immediate gene [IEG]) mRNA. The neuroleptics examined did not significantly regulate AADC mRNA in PC12 cells, and only haloperidol upregulated TH and 'c-fos' mRNA. Later studies in rats showed that acute neuroleptic administration increased ' c-fos' mRNA, whereas the immunoreactivity of a related IEG (delta FosB) was increased upon chronic treatment. These studies and a subsequent dose response study demonstrated that upregulation of both 'c-fos' mRNA and delta FosB immunoreactivity was most prominent in dopaminergic projection areas including the striatum and nucleus accumbens. Because it has been suggested that neuroleptic treatment might prevent neurodegeneration in schizophrenia, the effects of neuroleptics on the mRNA expression of neuroprotective target genes of delta FosB were examined both ' in vivo' and 'in vitro'. These genes included brain-derived neurotrophic factor (BDNF), the neuroprotective enzyme superoxide dismutase (SOD), and the low affinity nerve growth factor receptor (p75). While dopamine D2 blockade unfavorably regulated BDNF and p75 mRNA, 5-HT 2 blockade either had no effect on or favorably regulated BDNF, SOD, and p75 mRNA. Thus, although little about the contribution of serotonergic blockade in the neuroleptic response was determined, dopaminergic blockade regulated IEG's and several of their target genes. Future studies will be needed to understand the role of 5-HT2 receptor blockade in the neuroleptic response.
19

Positron emission tomography of extra-striatal dopamine release

Gravel, Paul. January 2008 (has links)
Altered dopamine (DA) neurotransmission is implicated in neurological and psychiatric disorders. Positron Emission Tomography (PET) imaging of DA release has mainly been restricted to striatal areas, rich in D2/D 3 receptors, owing to the moderate affinity of the radioligands used. To measure extra-striatal DA release, where D2/D3 receptor concentrations are much smaller, an approach using a high affinity radioligand, such as [18F]Fallypride, is required. The aim of the present study was to investigate in healthy volunteers the suitability of [ 18F]Fallypride to measure variations in D2/D3 receptor occupancy, as a function of amphetamine-induced DA release, in extra-striatal regions. Six healthy male volunteers underwent two 18F-Fallypride PET sessions, following the double-blind oral administration of 0.3 mg/kg of d-amphetamine (Dexedrine) or placebo (lactose), counter-balanced for order. Following amphetamine administration, D2/D3 receptor occupancy of 18F-Fallypride was significantly reduced in striatum, but also in extra-striatal regions, including substantia nigra, amygdala, thalamus, hippocampus, and cortical areas.
20

Modulation of mGlu5 Improves Sensorimotor Gating Deficits in Rats Neonatally Treated With Quinpirole Through Changes in Dopamine D2 Signaling

Brown, Russell W., Varnum, Christopher G., Wills, Liza J., Peeters, Loren D., Gass, Justin T. 01 December 2021 (has links)
This study analyzed whether the positive allosteric modulator of metabotropic glutamate receptor type 5 (mGlu5) 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) benzamide (CDPPB) would alleviate deficits in prepulse inhibition (PPI) and affect dopamine (DA) D2 signaling in the dorsal striatum and prefrontal cortex (PFC) in the neonatal quinpirole (NQ) model of schizophrenia (SZ). Male and female Sprague-Dawley rats were neonatally treated with either saline (NS) or quinpirole HCL (1 mg/kg; NQ), a DAD2 receptor agonist, from postnatal days (P) 1–21. Rats were raised to P44 and behaviorally tested on PPI from P44-P48. Before each trial, rats were subcutaneous (sc) administered saline or CDPPB (10 mg/kg or 30 mg/kg). On P50, rats were given a spontaneous locomotor activity test after CDPPB or saline administration. On P51, the dorsal striatum and PFC were evaluated for both arrestin-2 (βA-2) and phospho-AKT protein levels. NQ-treated rats demonstrated a significant deficit in PPI, which was alleviated to control levels by the 30 mg/kg dose of CDPPB. There were no significant effects of CDPPB on locomotor activity. NQ treatment increased βA-2 and decreased phospho-AKT in both the dorsal striatum and PFC, consistent with an increase DAD2 signaling. The 30 mg/kg dose of CDPPB significantly reversed changes in βA-2 in the dorsal striatum and PFC and phospho-AKT in the PFC equivalent to controls. Both doses of CDPPB produced a decrease of phospho-AKT in the PFC compared to controls. This study revealed that a mGlu5 positive allosteric modulator was effective to alleviate PPI deficits and striatal DAD2 signaling in the NQ model of SZ.

Page generated in 0.1673 seconds