Spelling suggestions: "subject:"dorsal root ganglia"" "subject:"dorsal root anglia""
11 |
Effect of zymosan-induced peritonitis on the expression of substance P in primary sensory neurons and spinal nerve processesArmstrong, Michael G 01 May 2016 (has links)
Macrophages and other cells of the innate immune system recognize foreign particles that could be potentially dangerous and respond by initiating an inflammatory response. The biologically active chemical mediators of this response called pro-inflammatory cytokines are produced in various myeloid derived immune cells and can affect other cells of the body. Interleukin-1β, a pro-inflammatory cytokine, has been shown to have direct effects on dorsal root ganglion (DRG) cell bodies including the upregulation and direct release of a nociceptive neurotransmitter called substance P (SP). Using a zymosan-induced model of systemic inflammation, we hypothesized that murine DRG neurons and the nerve processes associated with them in the dorsal horn of the spinal cord (SC) at the L1 level will show an upregulation of SP expression in response to inflammation in the peritoneum. Experimental mice were treated with a zymosan suspension (500mg/kg, intraperitoneal injection), and control mice received sterile filtered solution (intraperitoneal injection). Both DRG and SC specimens were collected after in situ fixation and subjected to immunofluorescence staining to label SP. Using confocal microscopy, fluorescence microscopy, and image analysis software this expression of SP was quantified and compared. In both tissue specimen groups, an increase in SP expression was discovered in zymosan treated mice. The exact cause of this increase was not specifically determined in this experiment. This experiment provided valuable insight about how a systemic inflammatory response can affect sensory nerve function. Successful methods for further experimentation were identified and information about the zymosan model of inflammation was obtained
|
12 |
Transcriptional Regulation in the Peripheral Nervous System and the Role of STAT3 in Axon RegenerationSmith, Robin Patrick 30 September 2008 (has links)
Several factors contribute to the failure of the central nervous system (CNS) to regenerate after injury. These include inhibition of axonal growth by myelin and glial scar associated molecules, as well as the intrinsic inability of adult CNS neurons to grow long axons in environments that are permissive for younger neurons. Neurons in the peripheral nervous system (PNS) display a much higher capacity to regenerate after injury than CNS neurons, as shown by conditioning lesion experiments and by microtransplantation of dorsal root ganglia neurons into CNS white matter tracts. Our central hypothesis is that neurons of the PNS express specific regeneration associated genes that mediate their enhanced growth response after injury. We have employed a combination of subtractive hybridization, microarray comparison and promoter analysis to probe for genes specific to neurons of the dorsal root ganglia (DRG), using cerebellar granule neurons (CGN) as a reference. We have identified over a thousand different genes, many of whose products form interaction networks and signaling pathways. Moreover, we have identified several dozen transcription factors that may play a role in establishing DRG neuron identity and shape their responses after injury. One of these transcription factors is Signal Transducer and Activator of Transcription 3 (STAT3), previously known to be upregulated in the PNS after a conditioning lesion but not known to be specific to the PNS. Using a real time PCR and immunochemical approaches we have shown that STAT3 is constitutively expressed and selectively active in DRG neurons both in culture and in vivo. We show that the overexpression of wild type STAT3 in cerebellar granule neurons leads to the formation of supernumerary neurites, whereas the overexpression of constitutively active STAT3-C leads to a 20% increase in total neurite outgrowth. It is hoped that the genetic delivery of STAT3-C, potentially combined with co-activators of transcription, will improve functional regeneration of CNS axons in vivo.
|
13 |
Chemical Transmission between Dorsal Root Ganglion Somata via Intervening Satellite Glial CellKim, Hyunhee 04 December 2012 (has links)
The structure of afferent neurons is pseudounipolar. Studies suggest that they relay action potentials (APs) to both directions of the T-junctions to reach the cell body and the spinal cord. Moreover, the somata are electrically excitable and shown to be able to transmit the signals to associated satellite cells. Our study demonstrates that this transmission can go further and pass onto passive neighbouring somata, if they are in direct contact with same satellite cells. The neurons activate the satellite cells by releasing ATP. This triggers the satellite cells to exocytose acetylcholine to the neighbouring neurons. In addition, the ATP inhibits the nicotinic receptors of the neurons by activating P2Y receptors and initiating the G-protein-mediated pathway, thus reducing the signals that return to the neurons that initiated the signals. This “sandwich synapse” represents a unique pathway by the ectopic release between the somata and the satellite cells.
|
14 |
Chemical Transmission between Dorsal Root Ganglion Somata via Intervening Satellite Glial CellKim, Hyunhee 04 December 2012 (has links)
The structure of afferent neurons is pseudounipolar. Studies suggest that they relay action potentials (APs) to both directions of the T-junctions to reach the cell body and the spinal cord. Moreover, the somata are electrically excitable and shown to be able to transmit the signals to associated satellite cells. Our study demonstrates that this transmission can go further and pass onto passive neighbouring somata, if they are in direct contact with same satellite cells. The neurons activate the satellite cells by releasing ATP. This triggers the satellite cells to exocytose acetylcholine to the neighbouring neurons. In addition, the ATP inhibits the nicotinic receptors of the neurons by activating P2Y receptors and initiating the G-protein-mediated pathway, thus reducing the signals that return to the neurons that initiated the signals. This “sandwich synapse” represents a unique pathway by the ectopic release between the somata and the satellite cells.
|
15 |
The role of BDNF in the injured/regenerating sensory neuronGeremia, Nicole Marie 22 December 2005
Peripheral nerve injury induces a robust regenerative state in sensory neurons that includes elevated expression of injury/regeneration-associated genes. The molecular signal(s) underlying the transition to the regenerating state are largely unknown. Brain-derived neurotrophic factor (BDNF) is the sole identified neurotrophin that is upregulated in sensory neurons following peripheral nerve injury. As members of the neurotrophin family exert a profound influence on the intact phenotype of sensory neurons, I hypothesize that injury-associated alterations in BDNF expression play a similar role in the injured/regenerating response. Antagonizing endogenous BDNF with a function-blocking antibody prevented increases in injury/regeneration-associated gene expression and decreased the growth capabilities of the injured sensory neurons. However, BDNF was not important for maintaining this cell body response in injured neurons. The elevation of BDNF expression in injured sensory neurons either through intrathecal infusion or electrical stimulation was associated with increased injury/regeneration-associated gene expression in a dose dependent manner and the latter corresponded to increased sensory axonal regeneration. Though BDNF was able to induce and enhance the intrinsic cell body response of injured sensory neurons, exogenous BDNF was not sufficient to induce an injury phenotype in intact sensory neurons. Thus, additional signals are likely induced by the injury response. In conclusion, BDNF plays a critical role in inducing the regenerative state in sensory neurons following injury and strategies aimed at elevating levels of BDNF available to the injured sensory neuron during the inductive phase improve the cell body response.
|
16 |
The role of BDNF in the injured/regenerating sensory neuronGeremia, Nicole Marie 22 December 2005 (has links)
Peripheral nerve injury induces a robust regenerative state in sensory neurons that includes elevated expression of injury/regeneration-associated genes. The molecular signal(s) underlying the transition to the regenerating state are largely unknown. Brain-derived neurotrophic factor (BDNF) is the sole identified neurotrophin that is upregulated in sensory neurons following peripheral nerve injury. As members of the neurotrophin family exert a profound influence on the intact phenotype of sensory neurons, I hypothesize that injury-associated alterations in BDNF expression play a similar role in the injured/regenerating response. Antagonizing endogenous BDNF with a function-blocking antibody prevented increases in injury/regeneration-associated gene expression and decreased the growth capabilities of the injured sensory neurons. However, BDNF was not important for maintaining this cell body response in injured neurons. The elevation of BDNF expression in injured sensory neurons either through intrathecal infusion or electrical stimulation was associated with increased injury/regeneration-associated gene expression in a dose dependent manner and the latter corresponded to increased sensory axonal regeneration. Though BDNF was able to induce and enhance the intrinsic cell body response of injured sensory neurons, exogenous BDNF was not sufficient to induce an injury phenotype in intact sensory neurons. Thus, additional signals are likely induced by the injury response. In conclusion, BDNF plays a critical role in inducing the regenerative state in sensory neurons following injury and strategies aimed at elevating levels of BDNF available to the injured sensory neuron during the inductive phase improve the cell body response.
|
17 |
Evaluation of isolated dorsal root ganglion cells as a model to study neural calcium overload / E.E. JordaanJordaan, Esaias Engelbertus January 2004 (has links)
Background and motivation: The event of neural Ca2+ overload is known to have
several deleterious effects resulting in cell death caused by ischaemia, hypoglycaemia,
hypoxia and several neurodegenerative diseases such as Alzheimer's disease,
Parkinson's disease and AIDS-related dementia. In vitro models for the investigation
of the mechanisms involved in Ca2+ overload include brain slice preparations,
neuronal cultures as well as acutely isolated neurons, mostly from the hippocampus
and cortical brain areas. Additional models for investigating Ca2+ overload may bring
about new knowledge to areas of the phenomenon that are still unresolved.
Methodology: In this study, several theoretical Ca2+ overload-related interventions
were combined aimed at inducing cell death in acutely isolated rat dorsal root ganglia.
To elucidate the mechanism/s involved in the cell death observed following exposure
to this intervention, the effects of several alterations to the intervention's composition
were assessed. This examination was extended by the addition of several recognized
and potential protective compounds to the intervention. Cell death was indicated by
the trypan blue exclusion assay and recorded after 18 hours exposure to the
interventions by counting live and dead neurons under a light microscope.
Results and conclusions: The goal was to evaluate the possible application of dorsal
root ganglia as a model for neural Ca2+ overload outside the brain. Since Ca2+w as
required for cell death to be induced, it is concluded that the observed cell death was
indeed primarily due to Ca2+ overload. Besides extracellular Ca2+, KC1-induced
depolarization was also required for cell death to be induced, while the antagonists did
not demonstrate significant protection against cell death. Based on the results, the
mechanism of Ca2+ overload could not be defined beyond doubt, but the voltage activated
Ca2+ channels are likely to be involved. / Thesis (M.Sc. (Physiology))--North-West University, Potchefstroom Campus, 2005.
|
18 |
Evaluation of isolated dorsal root ganglion cells as a model to study neural calcium overload / E.E. JordaanJordaan, Esaias Engelbertus January 2004 (has links)
Background and motivation: The event of neural Ca2+ overload is known to have
several deleterious effects resulting in cell death caused by ischaemia, hypoglycaemia,
hypoxia and several neurodegenerative diseases such as Alzheimer's disease,
Parkinson's disease and AIDS-related dementia. In vitro models for the investigation
of the mechanisms involved in Ca2+ overload include brain slice preparations,
neuronal cultures as well as acutely isolated neurons, mostly from the hippocampus
and cortical brain areas. Additional models for investigating Ca2+ overload may bring
about new knowledge to areas of the phenomenon that are still unresolved.
Methodology: In this study, several theoretical Ca2+ overload-related interventions
were combined aimed at inducing cell death in acutely isolated rat dorsal root ganglia.
To elucidate the mechanism/s involved in the cell death observed following exposure
to this intervention, the effects of several alterations to the intervention's composition
were assessed. This examination was extended by the addition of several recognized
and potential protective compounds to the intervention. Cell death was indicated by
the trypan blue exclusion assay and recorded after 18 hours exposure to the
interventions by counting live and dead neurons under a light microscope.
Results and conclusions: The goal was to evaluate the possible application of dorsal
root ganglia as a model for neural Ca2+ overload outside the brain. Since Ca2+w as
required for cell death to be induced, it is concluded that the observed cell death was
indeed primarily due to Ca2+ overload. Besides extracellular Ca2+, KC1-induced
depolarization was also required for cell death to be induced, while the antagonists did
not demonstrate significant protection against cell death. Based on the results, the
mechanism of Ca2+ overload could not be defined beyond doubt, but the voltage activated
Ca2+ channels are likely to be involved. / Thesis (M.Sc. (Physiology))--North-West University, Potchefstroom Campus, 2005.
|
19 |
Papel dos macrófagos no gânglio sensitivo na gênese e manutenção da dor neuropática / Role of sensitive ganglia macrophages in the genesis and maintenance of neuropathic painGuimarães, Rafaela Mano 28 June 2018 (has links)
A dor neuropática é uma condição debilitante causada por danos no sistema nervoso somatossensorial, como lesões dos nervos periféricos. As células do sistema imune, em particular os monócitos/macrófagos, desempenham um papel fundamental no desenvolvimento deste processo. Embora diversos estudos sugiram o envolvimento dessas células na medula espinal e gânglio da raiz dorsal (GRD) após a indução da neuropatia, a caracterização funcional e fenotípica, bem como a origem dessas células nesses órgãos, ainda não está esclarecida. Na medula espinal, estudos recentes têm demonstrado que apesar da massiva ativação e proliferação da micróglia residente, não há recrutamento de células mielóides para esse tecido após a indução da neuropatia, divergindo dos dados anteriormente descritos na literatura. Diante desses estudos controversos, iniciamos nosso trabalho demonstrando que possivelmente as células mielóides não são capazes de ultrapassar a barreira hematoencefálica e infiltrar na medula espinal após a indução da neuropatia periférica pelo modelo de SNI e assim, a ativação microglial ocorre de maneira independente do infiltrado dessas células neste tecido. No que se refere aos GRDs, trabalhos anteriores demonstram que há um aumento dos marcadores de ativação de macrófagos nesse tecido após a lesão periférica. Com isso, nós caracterizamos as subpopulações de monócitos/macrófagos presentes no GRD e identificamos, células CX3CR1+ e células CCR2+. De maneira interessante, ao isolarmos as células CX3CR1+ observamos que esse subtipo celular possa ser as principais células responsáveis pela produção dos mediadores inflamatórios no GRD após indução de SNI, enquanto as células CCR2+ parecem contribuir apenas de maneira parcial para a produção de IL-1? e TNF-? neste tecido, uma vez que a expressão desses mediadores não foi totalmente suprimida na ausência desse subtipo celular. Por fim, investigamos a origem desses subtipos de monócitos presentes no GRD. Por meio da parabiose entre animais wild type e GFP+, observamos que embora haja um pequeno aumento de células GFP+ no GRD de animais lesionados, essas células não são macrófagos. Corroborando com esses dados, ao realizarmos a parabiose de animais wild type com animais CX3CR1GFP/+CCR2RFP/+ não observamos presença de células CX3CR1 ou CCR2 no GRD após SNI. Em conjunto, nossos dados demonstram que existem duas subpopulações de monócitos no GRD, sendo uma delas residente e contribuindo de maneira efetiva para a produção dos mediadores inflamatórios locais e outra população de células CCR2+ que podem ter um papel mais relevante no sítio da lesão e assim, a exacerbação da inflamação local pode interferir indiretamente, na ativação das células presentes nos GRDs, bem como na produção dos mediadores inflamatórios no tecido, que vão contribuir para o desenvolvimento da dor neuropática. / Neuropathic pain is a debilitating disease due to severe damage to the nervous system, induced by peripheral nerve injury. The cells of the immune system, especially monocytes/macrophages, played a critical role in these process. Several projects have been suggested the role of these cells in the spinal cord and dorsal root ganglia (DRG) after neuropathic pain induction, but the functional and phenotypic characterization, as well as the source of cells, is still unclear. In the spinal cord, recent studies have shown that although massive activation and proliferation of the microglial occurred, there is no recruitment of myeloid cells to this tissue after the neuropathic pain induction, but this is contrary to previous findings in the literature. Based on this controversial studies, we first showed that myeloid cells are not able to overcome the blood-brain barrier and infiltrate in the spinal cord after the peripheral nerve injury by SNI model and thus, the microglial activation occurs independent of the infiltration of these cells in this tissue. With regard to DRGs, previous work has shown that there is an increase in the activation markers of macrophages after peripheral nerve injury.Thus, we characterized the subpopulations of monocytes/macrophages in the DRG and we identified CX3CR1+ and CCR2+ cells. Interestingly, when isolating the CX3CR1+ cells, we observed that this cell subtype may be the main cells responsible for the production of inflammatory mediators in the DRG after SNI induction, whereas CCR2+ cells appear to contribute only partially to the production of IL-1? and TNF-? in this tissue, since the expression of these mediators was not completely suppressed in the absence of this cellular subtype. Finally, we investigated the origin of these monocyte subtypes present in the DRG. Through parabiosis between wild type and GFP+ animals, we observed that although there is a small increase of GFP+ cells in the DRG of injured animals, these cells are not macrophages. Corroborating with these data, when performing the wild type parabiosis with CX3CR1GFP /+ CCR2RFP/+ animals, we did not observe the presence of CX3CR1 or CCR2 cells in the GRD after SNI. Finally, our data demonstrate that there are two subpopulations of monocytes in the DRG, one of them residing and contributing effectively to the production of local inflammatory mediators and another population of CCR2 cells that may have a more relevant role at the lesion site and thus, the exacerbation of local inflammation may indirectly interfere, in the activation of the cells present in the DRGs, as well as in the production of inflammatory mediators in the tissue, which will contribute to the development of neuropathic pain.
|
20 |
Papel dos macrófagos no gânglio sensitivo na gênese e manutenção da dor neuropática / Role of sensitive ganglia macrophages in the genesis and maintenance of neuropathic painRafaela Mano Guimarães 28 June 2018 (has links)
A dor neuropática é uma condição debilitante causada por danos no sistema nervoso somatossensorial, como lesões dos nervos periféricos. As células do sistema imune, em particular os monócitos/macrófagos, desempenham um papel fundamental no desenvolvimento deste processo. Embora diversos estudos sugiram o envolvimento dessas células na medula espinal e gânglio da raiz dorsal (GRD) após a indução da neuropatia, a caracterização funcional e fenotípica, bem como a origem dessas células nesses órgãos, ainda não está esclarecida. Na medula espinal, estudos recentes têm demonstrado que apesar da massiva ativação e proliferação da micróglia residente, não há recrutamento de células mielóides para esse tecido após a indução da neuropatia, divergindo dos dados anteriormente descritos na literatura. Diante desses estudos controversos, iniciamos nosso trabalho demonstrando que possivelmente as células mielóides não são capazes de ultrapassar a barreira hematoencefálica e infiltrar na medula espinal após a indução da neuropatia periférica pelo modelo de SNI e assim, a ativação microglial ocorre de maneira independente do infiltrado dessas células neste tecido. No que se refere aos GRDs, trabalhos anteriores demonstram que há um aumento dos marcadores de ativação de macrófagos nesse tecido após a lesão periférica. Com isso, nós caracterizamos as subpopulações de monócitos/macrófagos presentes no GRD e identificamos, células CX3CR1+ e células CCR2+. De maneira interessante, ao isolarmos as células CX3CR1+ observamos que esse subtipo celular possa ser as principais células responsáveis pela produção dos mediadores inflamatórios no GRD após indução de SNI, enquanto as células CCR2+ parecem contribuir apenas de maneira parcial para a produção de IL-1? e TNF-? neste tecido, uma vez que a expressão desses mediadores não foi totalmente suprimida na ausência desse subtipo celular. Por fim, investigamos a origem desses subtipos de monócitos presentes no GRD. Por meio da parabiose entre animais wild type e GFP+, observamos que embora haja um pequeno aumento de células GFP+ no GRD de animais lesionados, essas células não são macrófagos. Corroborando com esses dados, ao realizarmos a parabiose de animais wild type com animais CX3CR1GFP/+CCR2RFP/+ não observamos presença de células CX3CR1 ou CCR2 no GRD após SNI. Em conjunto, nossos dados demonstram que existem duas subpopulações de monócitos no GRD, sendo uma delas residente e contribuindo de maneira efetiva para a produção dos mediadores inflamatórios locais e outra população de células CCR2+ que podem ter um papel mais relevante no sítio da lesão e assim, a exacerbação da inflamação local pode interferir indiretamente, na ativação das células presentes nos GRDs, bem como na produção dos mediadores inflamatórios no tecido, que vão contribuir para o desenvolvimento da dor neuropática. / Neuropathic pain is a debilitating disease due to severe damage to the nervous system, induced by peripheral nerve injury. The cells of the immune system, especially monocytes/macrophages, played a critical role in these process. Several projects have been suggested the role of these cells in the spinal cord and dorsal root ganglia (DRG) after neuropathic pain induction, but the functional and phenotypic characterization, as well as the source of cells, is still unclear. In the spinal cord, recent studies have shown that although massive activation and proliferation of the microglial occurred, there is no recruitment of myeloid cells to this tissue after the neuropathic pain induction, but this is contrary to previous findings in the literature. Based on this controversial studies, we first showed that myeloid cells are not able to overcome the blood-brain barrier and infiltrate in the spinal cord after the peripheral nerve injury by SNI model and thus, the microglial activation occurs independent of the infiltration of these cells in this tissue. With regard to DRGs, previous work has shown that there is an increase in the activation markers of macrophages after peripheral nerve injury.Thus, we characterized the subpopulations of monocytes/macrophages in the DRG and we identified CX3CR1+ and CCR2+ cells. Interestingly, when isolating the CX3CR1+ cells, we observed that this cell subtype may be the main cells responsible for the production of inflammatory mediators in the DRG after SNI induction, whereas CCR2+ cells appear to contribute only partially to the production of IL-1? and TNF-? in this tissue, since the expression of these mediators was not completely suppressed in the absence of this cellular subtype. Finally, we investigated the origin of these monocyte subtypes present in the DRG. Through parabiosis between wild type and GFP+ animals, we observed that although there is a small increase of GFP+ cells in the DRG of injured animals, these cells are not macrophages. Corroborating with these data, when performing the wild type parabiosis with CX3CR1GFP /+ CCR2RFP/+ animals, we did not observe the presence of CX3CR1 or CCR2 cells in the GRD after SNI. Finally, our data demonstrate that there are two subpopulations of monocytes in the DRG, one of them residing and contributing effectively to the production of local inflammatory mediators and another population of CCR2 cells that may have a more relevant role at the lesion site and thus, the exacerbation of local inflammation may indirectly interfere, in the activation of the cells present in the DRGs, as well as in the production of inflammatory mediators in the tissue, which will contribute to the development of neuropathic pain.
|
Page generated in 0.0695 seconds