• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 510
  • 90
  • 62
  • 51
  • 41
  • 34
  • 13
  • 9
  • 6
  • 6
  • 6
  • 5
  • 5
  • 3
  • 2
  • Tagged with
  • 1041
  • 1041
  • 182
  • 178
  • 178
  • 162
  • 98
  • 82
  • 82
  • 79
  • 73
  • 68
  • 66
  • 64
  • 62
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
631

Associations between Fecal Indicator Bacteria Prevalence and Demographic Data in Private Water Supplies in Virginia

Smith, Tamara L. 12 June 2013 (has links)
Over 1.7 million Virginians rely on private water systems to supply household water. The heaviest reliance on these systems occurs in rural areas, which are often underserved in terms of financial resources and access to environmental health education. As the Safe Drinking Water Act (SDWA) does not regulate private water systems, it is the sole responsibility of the homeowner to maintain and monitor these systems. Previous limited studies indicate that microbial contamination of drinking water from private wells and springs is far from uncommon, ranging from 10% to 68%, depending on type of organism and geological region. With the exception of one thirty-year old government study on rural water supplies, there have been no documented investigations of links between private system water contamination and household demographic characteristics, making the design of effective public health interventions, very difficult. The goal of the present study is to identify potential associations between concentrations of fecal indicator bacteria (e.g. coliforms, E. coli) in 831 samples collected at the point-of-use in homes with private water supply systems and homeowner-provided demographic data (e.g. homeowner age, household income, education, water quality perception). Household income and the education of the perceived head of household were determined to have an association with bacteria concentrations. However, when a model was developed to evaluate strong associations between total coliform presence and potential predictors, no demographic parameters were deemed significant enough to be included in the final model. Of the 831 samples tested, 349 (42%) of samples tested positive for total coliform and 55 (6.6%) tested positive for E. coli contamination. Chemical and microbial source tracking efforts using fluorometry and qPCR suggested possible E. coli contamination from human septage in 21 cases.  The findings of this research can ultimately aid in determining effective strategies for public health intervention and gain a better understanding of interactions between demographic data and private system water quality. / Master of Science
632

An assessment of a liquid-liquid extraction procedure for the gas chromatographic analysis of chloroform in algal media

Perry, Kimberly Jean January 1979 (has links)
The purpose of this study was to evaluate the effects of several factors which might alter the analysis of chloroform in aqueous samples by the liquid-liquid extraction (LLE) method developed by Glaze at North Texas State University. A Bendix gas chromatograph (GC) was used. The factors examined were the effect of the ionic strength of the sample on the extraction method, the relative extraction efficiency when three pentane-to-sample ratios were used, the change in the response of the GC to a set of samples during a several hours lengthy analysis, the precision of the data obtained by the analysis procedure, and the precision of analyses of aqueous chloroform standards made from one set of secondary standards. These factors were examined to aid in the development in this laboratory of an analysis program to study the role of algal extracellular metabolites as trihaloomethanes precursors. Ionic strength up to 0.0116 (strengths of algal media) did not affect the results. Few differences in the extent of linearity or extraction efficiency were detected when pentane-to-sample ratios of 1:1, 2:1, or 1:2 were used. The extraction efficiencies of the three ratios deviated 11 percent of their mean, with four values not included. The GC's response to a set of samples analyzed at the beginning and end of a nine-to-twelve hour experiment may change significantly. Standards prepared in pentane did not change during the test period. Four replicate analyses of the same sample were found to be highly precise. / Master of Science
633

Evaluation of Dechlorinating Agents and Disposable Containers for Odor Testing of Drinking Water

Worley, Jennifer Lee 08 September 2000 (has links)
As the bottled water trend continues to rise across the nation, drinking water utilities have become more concerned with ensuring consumer satisfaction of their product. Although public water supplies are safeguarded by regulations, aesthetically unappealing taste-and-odor problems have led consumers to search for alternative water sources, such as bottled water or tap water processed by point-of-use filters. Consequently, taste-and-odor monitoring has become important to the drinking water industry. Because many utilities use chlorine to disinfect the water, chlorine odor often masks other more subtle odors that may eventually cause consumer complaints. As treated water travels from the water treatment plant to the consumer, chlorine residual diminishes and may reveal a water's naturally less-pleasing odors. Consequently, odor monitoring at the water treatment plant, where chlorine concentrations are at a peak, may not identify potential displeasing smells. Proper evaluation of these odor-causing substances requires that the chlorine odor first be eliminated before evaluating any remaining odors. Dechlorinating agents can remove chlorine, but some will produce other unwanted odors or even remove certain odorous compounds. This research describes the efficiency of several of these agents (ascorbic acid, hydrogen peroxide, oxalic acid, sodium nitrite, and sodium thiosulfate) in dechlorinating chlorinated solutions of the earthy-smelling compound geosmin and musty-smelling MIB. Interfering odors in reusable containers pose another problem in drinking water odor analysis. The most common odor-analysis methods (TON and FPA) involve the use of glass flasks, which often either develop chalky odors or have persistent lingering odors from previous evaluations. Furthermore the glass flasks break easily and are difficult to clean. This research also evaluates the suitability of four types of disposable plastic containers for odor analyses. / Master of Science
634

Determining the Sustainability of Coal Mine Cavity Discharge as a Drinking Water Source

Anderson, Eric T. 14 April 1999 (has links)
In southwestern Virginia, adequate sources of public water for small isolated communities are difficult to find. While many alternatives exist, one of the largest sources of water in this region is flooded abandoned coal mines. One such coal mine aquifer was chosen for a sustainability study in Dickenson County, Virginia. A flowrate monitoring system was installed at the point of discharge from the mine, and the flow records from three months of data collection were analyzed. The recording period included one of the driest periods in recent years, and the flowrate data recorded provided useful information regarding the sustainability of the system. After a study of the geology and groundwater flow patterns in the region, it was determined that a coal mine aquifer is very similar to the extremely heterogeneous system seen in karst landscapes. Thus, techniques common to karst phenomenon were used to analyze the spring hydrograph. A spring recession analysis was performed upon five storm recessions, and the coefficients for each recession compared and discussed in light of known geologic information. It was discovered that the recession coefficients described the flow from the mine very adequately and that the mine response to a rainfall pulse was very similar to the response of certain types of karst aquifers. This information was used to predict a sustainable flow from the mine. A cross-correlation analysis was performed in an attempt to fit a "black box" model to the flow data, as well as to verify the results of the spring recession analysis. The correlation analysis proved that one rainfall event produced many separate reactions in the flowrate at the mine discharge point. This strengthened results concluded by the recession analysis. It was found that the flow record was not long enough to adequately create a statistical model, but a procedure was described that could be used to model flows once a larger flow record was available. / Master of Science
635

Assessing biofilm development in drinking water distribution systems by Machine Learning methods

Ramos Martínez, Eva 02 May 2016 (has links)
[EN] One of the main challenges of drinking water utilities is to ensure high quality supply, in particular, in chemical and microbiological terms. However, biofilms invariably develop in all drinking water distribution systems (DWDSs), despite the presence of residual disinfectant. As a result, water utilities are not able to ensure total bacteriological control. Currently biofilms represent a real paradigm in water quality management for all DWDSs. Biofilms are complex communities of microorganisms bound by an extracellular polymer that provides them with structure, protection from toxics and helps retain food. Besides the health risk that biofilms involve, due to their role as a pathogen shelter, a number of additional problems associated with biofilm development in DWDSs can be identified. Among others, aesthetic deterioration of water, biocorrosion and disinfectant decay are universally recognized. A large amount of research has been conducted on this field since the earliest 80's. However, due to the complex environment and the community studied most of the studies have been developed under certain simplifications. We resort to this already done work and acquired knowledge on biofilm growth in DWDSs to change the common approaches of these studies. Our proposal is based on arduous preprocessing and posterior analysis by Machine Learning approaches. A multi-disciplinary procedure is undertaken, helping as a practical approach to develop a decision-making tool to help DWDS management to maintain, as much as possible, biofilm at the lowest level, and mitigating its negative effects on the service. A methodology to detect the more susceptible areas to biofilm development in DWDSs is proposed. Knowing the location of these hot-spots of the network, mitigation actions could be focused more specifically, thus saving resources and money. Also, prevention programs could be developed, acting before the consequences of biofilm are noticed by the consumers. In this way, the economic cost would be reduced and the service quality would improve, eventually increasing consumers' satisfaction. / [ES] Uno de los principales objetivos de las empresas encargadas de la gestión de los sistemas de distribución de agua potable (DWDSs, del inglés Drinking Water Distribution Systems) es asegurar una alta calidad del agua en su abastecimiento, tanto química como microbiológica. Sin embargo, la existencia de biofilms en todos ellos, a pesar de la presencia de desinfectante residual, hace que no se pueda asegurar un control bacteriológico total, por lo que, hoy en día, los biofilms representan un paradigma en la gestión de la calidad del agua en los DWDSs. Los biofilms son comunidades complejas de microorganismos recubiertas de un polímero extracelular que les da estructura y les ayuda a retener el alimento y a protegerse de agentes tóxicos. Además del riesgo sanitario que suponen por su papel como refugio de patógenos, existen muchos otros problemas asociados al desarrollo de biofilms en los DWDSs, como deterioro estético del agua, biocorrosión y consumo de desinfectante, entre otros. Una gran cantidad de investigaciones se han realizado en este campo desde los primeros años 80. Sin embargo, debido a la complejidad del entorno y la comunidad estudiada la mayoría de estos estudios se han llevado a cabo bajo ciertas simplificaciones. En nuestro caso, recurrimos a estos trabajos ya realizados y al conocimiento adquirido sobre el desarrollo del biofilm en los DWDSs para cambiar el enfoque en el que normalmente se enmarcan estos estudios. Nuestra propuesta se basa en un intenso pre-proceso y posterior análisis con técnicas de aprendizaje automático. Se implementa un proceso multidisciplinar que ayuda a la realización de un enfoque práctico para el desarrollo de una herramienta de ayuda a la toma de decisiones que ayude a la gestión de los DWDSs, manteniendo, en lo posible, el biofilm en los niveles más bajos, y mitigando sus efectos negativos sobre el servicio de agua. Se propone una metodología para detectar las áreas más susceptibles al desarrollo del biofilm en los DWDSs. Conocer la ubicación de estos puntos calientes de biofilm en la red permitiría llevar a cabo acciones de mitigación de manera localizada, ahorrando recursos y dinero, y asimismo, podrían desarrollarse programas de prevención, actuando antes de que las consecuencias derivadas del desarrollo de biofilm sean percibidas por los consumidores. De esta manera, el coste económico se vería reducido y la calidad del servicio mejoraría, aumentando, finalmente, la satisfacción de los usuarios. / [CA] Un dels principals reptes dels serveis d'aigua potable és garantir el subministrament d'alta qualitat, en particular, en termes químics i microbiològics. No obstant això, els biofilms desenvolupen invariablement en tots els sistemes de distribució d'aigua potable (DWDSs, de l'anglès, Drinking Water Distribution Systems), tot i la presència de desinfectant residual. Com a resultat, les empreses d'aigua no són capaces de garantir un control bacteriològic total. Actualment el biofilms representen un veritable paradigma en la gestió de la qualitat de l'aigua per a tots les DWDSs. Els biofilms són comunitats complexes de microorganismes vinculats per un polímer extracel·lular que els proporciona estructura, protecció contra els tòxics i ajuda a retenir els aliments. A més del risc de salut que impliquen els biofilms, com a causa del seu paper com a refugi de patògens, una sèrie de problemes addicionals associats amb el desenvolupament del biofilm en els DWDSs pot ser identificat. Entre altres, deteriorament estètic d'aigua, biocorrosión i decadència de desinfectant són universalment reconeguts. Una gran quantitat d'investigació s'ha realitzat en aquest camp des dels primers anys de la dècada del 80. No obstant això, a causa de la complexitat de l'entorn i la comunitat estudiada, la major part dels estudis s'han desenvolupat sota certes simplificacions. Recorrem a aquest treball ja realitzat i a aquest coneixement adquirit en el creixement de biofilms en els DWDSs per canviar el punt de vista clàssic del biofilm en estudis en els DWDSs. La nostra proposta es basa en l'ardu processament previ i posterior anàlisi mitjançant enfocaments d'aprenentatge automàtic. Es va dur a terme un procediment multidisciplinari, ajudant com un enfocament pràctic per desenvolupar una eina de presa de decisions per ajudar a la gestió dels DWDS a mantenir, en la mesura possible, els biofilm en els nivells més baixos, i la mitigació dels seus efectes negatius sobre el servei. Es proposa una metodologia per detectar les àrees més susceptibles al desenvolupament de biofilms en els DWDSs. En conèixer la ubicació d'aquests punts calents de la xarxa, les accions de mitigació podrien centrar-se més específicament, estalviant recursos i diners. A més, els programes de prevenció es podrien desenvolupar, actuant abans que les conseqüències del biofilm es noten pels consumidors. D'aquesta manera, el cost econòmic seria reduït i la qualitat del servei podria millorar, finalment augmentant la satisfacció dels consumidors. / Ramos Martínez, E. (2016). Assessing biofilm development in drinking water distribution systems by Machine Learning methods [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/63257
636

Opportunistic Pathogens and the Brain-eating Amoeba, Naegleria fowleri in Reclaimed Water, Municipal Drinking Water, and Private Well Water

Strom, Laurel Elisabeth 13 October 2017 (has links)
Opportunistic pathogens (OPs) are of special concern for immunocompromised populations and are known to grow in both drinking water and reclaimed water (i.e., non-potable recycled water) distribution systems, with aerosol inhalation and other non-ingestion exposures that are not addressed by existing regulatory frameworks. Factors enabling the growth of OPs in water distribution and premise (i.e., building) plumbing systems distributing reclaimed and other water sources systems are poorly understood especially for the emerging OP, Naegleria fowleri (i.e. brain-eating amoeba). Three phases of investigation were carried out to identify factors that facilitate the growth of OPs in main distribution and premise plumbing systems, with particular attention on reclaimed water systems, aging water mains, and private well systems. Phase one examined the role of biological treatment to remove organic carbon and disinfectant type on the occurrence of OPs during distribution of reclaimed water. Laboratory-scale simulated reclaimed water distribution systems were employed to systematically examine the effects of prior granular activated carbon (GAC) biofiltration of the water; chlorine, chloramines, or no disinfectant, and water ages ranging up to 5 days. The second and third phases of research explored the role of nitrification, iron corrosion, and disinfectant on the growth of N. fowleri both in municipal drinking water from a city grappling with aging water infrastructure and untreated private well water. Results from the simulated reclaimed water distribution systems suggested that biologically-active GAC filtration may unintentionally select for specific OPs, contrary to expectations and experiences with oligotrophic conditions in potable water systems. While GAC biofiltration was associated with lower total bacteria and Legionella spp. gene markers, there were no apparent benefits in terms of other OPs analyzed. Similarly, disinfectant treatments successful for controlling OPs in potable water were either ineffective or associated with increased levels of OPs, such as Mycobacterium spp. and Acanthamoeba spp., in the reclaimed water examined. In the potable water study, it was possible to recreate conditions associated with growth of N. fowleri in the aged main distribution system from where the water for the experiment was collected; including corroding iron mains, nitrification, and disinfectant decay. While the effects of nitrification could not be confirmed, there was a clear association of iron corrosion with N. fowleri proliferation. The role of iron was explored further in what, to the author's knowledge, was the first study of N. fowleri in private wells. Analysis of 40 wells found correlations between N. fowleri and stagnant iron levels, further supporting the hypothesis that iron corrosion or iron encourages the growth of N. fowleri, and, because wells are not routinely disinfected, not necessarily as a result of promoting disinfectant decay. As this study took place following a major flooding event, it provided insight not only into how surface water contamination may influence private well water microbial communities, but also added to the understanding that current recommendations for disinfecting private wells are inadequate and standards should be implemented to aid homeowners in the event of flooding. This exploratory research illuminated several factors influencing the OP growth in a range of water systems. Identifying key variables that control growth is crucial to improving the safety of these systems. / MS / Water borne bacteria that effect the immune systems of the sick, known as opportunistic pathogens (OPs), have become a major heath concern. These organisms are known to grow in drinking water and reclaimed water (i.e., non-potable recycled water) distribution systems yet there are no regulations aimed at prevention. There is also limited knowledge on how premise plumbing and water sources effect the growth, population, and risk of infection by OPs, especially for Naegleria fowleri (i.e. brain-eating amoeba). An investigation was carried out in three parts to determine what influences the growth of OPs in water distribution and household plumbing systems, with particular attention to reclaimed water, municipal drinking water, and private well systems. Phase one examined the role of biological treatment to remove organic carbon and disinfectant type on the occurrence of OPs during distribution of reclaimed water. Laboratory-scale simulated reclaimed water distribution systems were used to examine the effects of granular activated carbon (GAC) biofiltration of the water, disinfectants (chlorine, chloramines, or no disinfectant), and water ages ranging zero to five days. The second and third phases of research explored the role of nitrification, iron corrosion, and disinfectant on the growth of N. fowleri both in municipal drinking water from a city with aging water infrastructure and untreated private well water. Results from the simulated reclaimed water distribution systems suggested that biologically-active GAC filtration may allow for the growth of specific OPs. While GAC biofiltration was associated with lower total bacteria and Legionella spp., there were no apparent benefits in reducing the presence of other OPs. Similarly, common disinfectant treatments for preventing OPs in drinking water were either ineffective or increased viii levels of OPs, such as Mycobacterium spp. and Acanthamoeba spp., in the reclaimed water. In the drinking water study, conditions were introduced to grow N. fowleri in aged drinking water distribution systems with the additions of corroding iron, nitrification (using nitrifying bacteria), and disinfectant. While the effects of nitrification could not be confirmed, there was a clear relationship between iron corrosion and N. fowleri growth. The role of iron was explored further in what, to the author’s knowledge, was the first study of N. fowleri in private wells. Forty wells were examined and the relationships between N. fowleri and stagnant iron levels supported the hypothesis that iron corrosion or iron increases the growth of N. fowleri. As this study took place following a major flooding event, it provided data not only into how surface water contamination may influence private well water microbial communities, but also added to the understanding that current recommendations for disinfecting private wells are inadequate and standards should be implemented to aid homeowners in the event of flooding. This exploratory research highlighted several variables that may allow for the growth of OPs in a range of water systems. Identifying key variables that control growth is crucial to improving the safety of these systems.
637

Comparison of ion chromatography and flow injection analysis methods for monitoring chlorite and chlorate ions in drinking water

Ledder, Tracey 17 March 2010 (has links)
Up-coming regulations on chlorine dioxide in drinking water treatment require low level measurement of chlorite ion (CI0₂-) and chlorate ion (CI0₃-). This research investigated analysis of CI0₂- and CI0₃-; in drinking water by flow injection analysis with iodometric detection (FIA) and ion chromatography with conductivity detection (IC). Both the FIA and IC methods were accurate for the determination of CIO₂-; and CIO₃-; in reagent water. The IC method was accurate in drinking water, however, FIA responded to chloramines and other oxidants present in drinking water causing inaccurate analysis of CIO₂-; and CIO₃-; by FIA. The two IC eluants investigated, a carbonate/bicarbonate mixture and a borate/boric acid mixture, performed well. By taking advantage of the slightly different separation abilities of each eluant, the IC method can be modified to maximize resolution of CIO₂-; and CIO₃-; in different drinking water matrices. Chlorite was unstable in chlorinated drinking water but was stable for up to three days when sodium oxalate was added and stable up to eighteen days when ethylene diamine was added as a preservative. Chlorate was stable in drinking water for up to eighteen days with or without a preservative. The propagation of errors method for determining detection limits yielded limits of detection for CIO₂- (mg/L) of 0.05 for FIA, 0.03 for the IC carbonate eluant and 0.01 for the IC borate eluant. For CIO₃- the limits of detection (mg/L) were 0.24 for FIA; 0.11 for the IC carbonate eluant and 0.02 for the borate eluant. / Master of Science
638

Verification of membrane integrity testing for microfiltration : correlation between integrity testing and microbial removal efficiency

Miller, Frank Anthony 01 January 1999 (has links)
No description available.
639

Modeling mass transfer in single membrane elements

Lovins, William A. 01 January 1996 (has links)
No description available.
640

Verification and modeling of mass transfer in single and multi-element nanofiltration arrays for pilot-and full-scale operation

Mulford, Luke A. 01 January 1999 (has links)
No description available.

Page generated in 0.0656 seconds