• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 1
  • Tagged with
  • 17
  • 17
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Teleoperation and the influence of driving feedback on drivers’ behaviour and experience

Zhao, Lin January 2023 (has links)
Automated vehicles (AVs) have been developing at a rapid pace over the past few years. However, many difficulties still remain for achieving full Level-5 AVs. This signifies that AVs still require human operators to intervene or assist, such as taking over control of AVs or selecting their routes. Therefore, teleoperation can be seen as a subsystem of AVs that can remotely control and supervise a vehicle when needed. However, teleoperated driving conditions are largely different from real-life driving, so remote drivers may experience different driving feedback. In such a situation, therefore, the driving behaviour and performance of remote drivers can also be impacted. The following three studies were conducted to investigate these points. First, a seamless comparative study was carried out between teleoperated and real-life driving. Driving behaviour and performance were compared in two scenarios: slalom and lane following. Significant differences in driving behaviour and performance between them were found in the study. The lane following deviation during teleoperated driving is much greater than that of real-life driving. In addition, remote drivers are more likely to drive slower and make more steering corrections in lane following manoeuvres. Second, three types of steering force feedback (SFF) modes were compared separately in both teleoperated and real-life driving to investigate the effect of SFF on driving experience. The three SFF modes consist of Physical model-based steering force Feedback (PsF), Modular model-based steering force Feedback (MsF), and No steering force Feedback (NsF). The difference between PsF and MsF is that the main forces come from different sources, namely the estimated tyre force and steering motor current, respectively. As expected, the experimental results indicate that NsF would significantly reduce the driving experience in both driving conditions. In addition, remote drivers were found to require reduced steering feedback force and returnability. Finally, the influence of motion-cueing, sound, and vibration feedback on driving behaviour and experience was studied in a virtual teleoperation platform based on the IPG CarMaker environment. The prototype of a teleoperated driving station (TDS) with motion-cueing, sound, and vibration feedback was first developed to study human factors in teleoperated driving. Then, the low-speed disturbance scenario and high-speed dynamic scenario were used separately to investigate how these factors affect driving. Experimental results indicate that sound and vibration feedback can be an important factor in speed control by providing remote drivers a sense of speed. In the low-speed disturbance scenario, motion-cueing feedback can help with road surface perception and improve the driving experience. However, it did not significantly improve driving performance in the high-speed dynamic scenario. The research conducted reveals how driving behaviour may change in teleoperated driving and how different driving feedback influences it. These results could provide guidance for improving teleoperated driving in future research and serve as a guide for policymaking related to teleoperation. / Självkörande fordon (AV) har utvecklats i snabb takt de senaste åren. Men det finns fortfarande många utmaningar innan man når  helt självkörande fordon. Följaktligen krävs fortfarande säkerhetsförare när AV-enheter är i drift och i framtida drift kan AV-enheter stöta på oväntade problem som en människa behöver lösa. Fjärrövervakning kan därför ses som ett  backupsystem, som kan fjärrstyra och övervaka fordonet när det inte fungerar. Men situationen  vid fjärrstyrning är helt annorlunda än för körning i verkligheten, där fjärroperatörer kan uppleva olik återkoppling  och känslor jämfört med körning i verkligheten. Därför kan även fjärroperatörernas körbeteende och prestanda ändras i denna situation. För att undersöka detta utfördes följande tre studier. För det första genomfördes en sömlös jämförelsestudie mellan fjärrstyrning och verklig körning. Körbeteende och prestanda jämfördes i två scenarier, nämligen slalom och linjeföljning. Signifikanta skillnader i körbeteende och prestanda hittades mellan fjärrstyrning och körning i verkligheten. Avvikelse från linjeföljning vid fjärrstyrning är betydligt större än för körning i verkligheten. Dessutom är det mer sannolikt att fjärroperatörer kör i lägre hastigheter och gör fler styrkorrigeringar vid fjärrstyrning.  För det andra jämfördes tre typer av styrkraftsåterkopplingsmodeller (SFF) separat i både fjärrstyrning och verklig körning för att undersöka SFF:s inverkan på körupplevelsen. De tre SFF-modellerna inkluderar en  modell för fysisk återkoppling (PsF), modell för modulär återkoppling (MsF) och ingen återkoppling (NsF). Skillnaden mellan PsF och MsF är att huvudkrafterna härrör från olika källor, nämligen respektive från den matematiskt uppskattade däckkraften och från styrmotorströmmen. Som förväntat tyder resultaten av experimentet på att NsF avsevärt skulle minska körupplevelsen vid både fjärrstyrning och körning i verkligheten. Vid fjärrstyrning upptäcktes också  att operatörer kräver minskad styråterkopplingskraft och returförmåga.  Slutligen studerades påverkan av rörelsestyrning, ljud och vibrationsfeedback på körbeteende och upplevelse. Prototypen av fjärrkontrolltorn  med rörelsestyrning, ljud och vibrationsfeedback utvecklades först för att studera mänskliga faktorer vid fjärrstyrning. Sedan användes ett låghastighetsscenario med störningar och det dynamiska höghastighetsscenariot separat för att undersöka hur dessa faktorer påverkar körning vid fjärrstyrning. Resultaten av experimentet indikerar att ljud- och vibrationsåterkoppling kan vara till stor hjälp för att reglera  hastigheten genom att ge operatörerna medvetenhet om hastighet. I låghastighetsscenariot kan återkoppling  från rörelsestyrning underlätta uppfattningen av vägytan och förbättra körupplevelsen. Den ökade dock inte nämnvärt dynamisk körprestanda  i hög hastighet.  Denna forskning undersöker hur körbeteendet kan förändras vid fjärrstyrning och hur olika återkopplingar till operatör påverka körning på distans. Dessa resultat kan  ge vägledning om hur man kan förbättra fjärrstyrning i framtida forskning och fungera som en referens för skapande av regler kopplat till fjärrövervakning och fjärrstyrning. / <p>QC 230504</p>
12

ASSESSING THE EFFECTS OF COGNITIVE SECONDARY TASKS AND AUTOMATION TYPE ON CHANGES IN HEART RATE: IMPLICATIONS FOR THE POTENTIAL USE OF NANOTECHNOLOGY

Nade Liang (7044191) 14 August 2019 (has links)
<div>Vehicle automation is developing at a rapid rate worldwide. However, even lower levels of automation, such as SAE Level-1, are expected to reduce drivers’ workload by controlling either speed or lane position. At the same time, however, drivers’ engagement in secondary tasks may make up for this difference in workload displaced by automation. Previous research has investigated the effects of adaptive cruise control (ACC) on driving performance and workload, but little attention has been devoted to Lane Keeping Systems (LKS). In addition, the influence of secondary cognitive tasks on Level-1 driving performance is also not well understood.</div><div><br></div><div>The first goal of this thesis study was to examine the effects of secondary cognitive tasks and driving condition on driving performance. The second goal was to examine the effects of secondary cognitive tasks and driving condition on heart rate related measurements that reflect changes in workload. Both a novel nano-sensor and a commercial ECG sensor were used to measure heart rate. Thus, the third goal was to compare the capability of a nano-sensor in detecting changes in heart rate and heart rate variability with a commercially available ECG sensor. Twenty-five participants drove a simulated vehicle in manual, ACC and LKS driving conditions, while performing a secondary cognitive (N-back) task with varying levels of difficulty.</div><div><br></div><div>Results showed that more difficult cognitive secondary tasks were beneficial to driving performance in that a lower standard deviation of lane departure (SDLD) and a lower standard deviation of vehicle speed (SDVS) were both observed. Heart rate and NASA-TLX workload scores were significantly higher in the most difficult secondary task and in the manual driving conditions. However, heart rate variability measures (SDNN, RMSSD, pNN50, LF Power and HF Power) indicated lower variability under more difficult secondary tasks. This thesis suggests that nanotechnological devices may serve as a potential alternative to other heart rate measuring technology. Limitations in detecting minor heart rate changes between different driving conditions and in heart rate variability measuring were also acknowledged.</div>
13

Visual and Demographic Factors in Bioptic Driving Training and Road Safety

Dougherty, Bradley Edward 25 July 2013 (has links)
No description available.
14

Drivers’ reliance on lane keeping assistance systems as a function of the level of assistance

Popken, Anke 28 April 2010 (has links) (PDF)
Fahrerassistenzsysteme werden zunehmend in Fahrzeuge eingebaut mit dem Ziel, den Fahrer beim Fahren zu unterstützen, Fahrfehler zu vermeiden und damit die Fahrsicherheit zu erhöhen. Derzeit sind häufig Systeme im Einsatz, die den Fahrer vor bestimmten Sicherheitsrisiken warnen (z.B. vor einem unbeabsichtigten Verlassen der Fahrspur). Der Trend geht aber hin zu Systemen, die stärker ins Fahrgeschehen eingreifen und somit Teile der Fahraufgabe automatisieren (z.B. selbständig die Spurhaltung des Fahrzeugs übernehmen). Aus der Forschung zur Mensch-Maschine Interaktion ist jedoch bekannt, dass Automatisierung nicht zwangsläufig zur Erhöhung von Sicherheit führt, sondern dass sie vielmehr auch unerwünschte Nebeneffekte für Performanz und Sicherheit mit sich bringen kann in dem Maße, wie Menschen an die veränderten Aufgabenanforderungen adaptieren. Im Straßenverkehr wird insbesondere befürchtet, dass Fahrer sich zu stark auf Fahrerassistenzsysteme verlassen, sich teilweise aus der Fahraufgabe zurückziehen („abschalten“) und ihre Aufmerksamkeit fahrfremden Dingen widmen. Dies kann unter Umständen dazu führen, dass Fahrer im Falle von Systemfehlern oder –ausfällen nicht mehr in der Lage sind rechtzeitig und angemessen einzugreifen bzw. die Kontrolle über das Fahrzeug zu übernehmen. Ziel der Dissertation war es zu untersuchen, inwieweit sich die Involviertheit von Fahrern in die Fahraufgabe verändert je stärker sie durch ein Assistenzsystem unterstützt werden (d.h., je stärker das System Teile der Fahraufgabe automatisiert). Um dies zu untersuchen wurden zwei theoretische Konzepte herangezogen: a) das Verlassen der Fahrer (auf ein System) und b) das Situationsbewusstsein der Fahrer. Basierend auf einer umfassenden Analyse der Forschungsliteratur zum Thema Automatisierung wurde ein theoretisches Rahmenmodell entwickelt, welches Veränderungen in der Involviertheit des Fahrers in die Fahraufgabe auf menschliche Adaptationsprozesse auf verschiedenen Ebenen zurückführt, die sich in Folge der veränderten Aufgaben­anforderungen durch zunehmende Automatisierung ergeben. Dazu zählen Veränderungen in Einstellungen, sowie in kognitiven, energetischen, und motivationalen Prozessen. Um Veränderungen in diesen Prozessen zu untersuchen, wurde eine Vielzahl an objektiven und subjektiven Maßen erhoben. Hauptgegenstand der Dissertation ist eine umfangreiche Fahrsimulatorstudie im Fahrsimulator mit Bewegungsplattform bei VTI (Swedish National Road and Transport Research Institute) in Linköping, Schweden. Dabei kamen zwei Querführungsassistenzsysteme (ein Heading Control System und ein Lane Departure Warning System) zum Einsatz, die den Fahrer in unterschiedlichem Maße bei der Spurhaltung unterstützten. Im Gegensatz zu einem Großteil der bisherigen Studien wurden prozessorientierte Performanzmaße zur Erfassung des Verlassens der Fahrer auf die Assistenzsysteme und des Situationsbewusstseins der Fahrer verwendet. Das Verlassen der Fahrer auf die Querführungsassistenzsysteme wurde durch Blickverhaltensmaße über die Bereitschaft der Fahrer erfasst, ihre visuelle Aufmerksamkeit von der Straße ab hin zu einer Zweitaufgabe im Fahrzeuginnenraum zu wenden. Zur Messung des Situationsbewusstseins der Fahrer wurden Fahrverhaltensmaße herangezogen welche als Indikator für die Schnelligkeit und Abruptheit der Reaktionen der Fahrer auf unerwartete kritische Fahrsituationen dienten. Ein Hauptbefund der Dissertation war, dass die Fahrer sich signifikant im Ausmaß ihres Verlassens auf einen hohen Grad an Assistenz unterschieden. Diese interindividuelle Varianz im Verlassen der Fahrer auf einen hohen Grad an Assistenz konnte am besten durch das Vertrauen der Fahrer in das Querführungsassistenzsystem und ihr Aktivierungsniveau erklärt werden: Je höher das Vertrauen der Fahrer in das System und je geringer ihr Aktivierungsniveau, desto stärker verließen sie sich auf das System. Individuelle Fahrermerkmale (Fahrstil) erklärten einen signifikanten Anteil der Varianz im Vertrauen der Fahrer in die Spurhalteassistenzsysteme. (ersetzt wegen neuem Herausgeber) / Advanced driver assistance systems are increasingly built in vehicles with the aim to support drivers while driving, to reduce driver errors and thereby to increase traffic safety. At present, these systems are often designed to warn drivers of specific safety risks (e.g., of an imminent departure from the driving lane). However, there is a trend towards systems that more strongly intervene in driving and that hence, automate parts of the driving task (e.g., autonomously keep the vehicle within the driving lane). However, research on human-machine interaction has shown that automation does not necessarily increase safety, but that it may also lead to unanticipated side effects on performance and safety to the extent that humans adapt to the changing task demands. A major concern in road traffic is that drivers rely too heavily on driver assistance systems, become less actively involved in the driving task, and divert their attention to things unrelated to driving. Thus, in the case of system malfunctions or failures, drivers possibly may not be prepared to intervene timely and accordingly and to regain control over the vehicle, respectively. The aim of this dissertation was to investigate changes in drivers’ active engagement in the driving task as a function of the degree to which they are supported by a driver assistance system (i.e., as a function of the degree to which the system automates the driving task). Drivers’ active task engagement was studied by referring to two theoretical concepts: a) drivers’ reliance (on a system) and b) drivers’ situation awareness. Based on an extensive review of previous research on automation, a conceptual theoretical framework was developed that links changes in operators’ active task engagement to human adaptation processes on different levels in response to the changing task demands due to automation. Among them are changes in human attitudes as well as in cognitive, motivational and energetic processes. In order to determine the relative influence of these processes, a range of objective and subjective measures was collected. The essential part of the dissertation is an extensive driving simulator study in an advanced moving-base driving simulator at VTI (Swedish National Road and Transport Research Institute) in Linköping, Sweden. Two lateral support systems (a Heading Control system and a Lane Departure Warning system) were implemented which assisted drivers to different degrees in lane keeping. Contrary to most previous automation studies, drivers’ reliance on the lane keeping assistance systems and their situation awareness were studied by using process-oriented performance-based measures. Drivers’ reliance on the lane keeping assistance systems was assessed by eye glance behaviour measures indicating drivers’ preparedness to allocate their visual attention away from the road scene to an in-vehicle secondary task. Drivers’ situation awareness was assessed by behavioural measures of the latency and magnitude of drivers’ initial reactions to unexpected critical driving situations. A major finding of the study was that drivers differed significantly in their reliance on a high level of lane keeping assistance. This interindividual variance in drivers’ reliance on higher-level assistance could be best explained by drivers’ trust in the system and their energetic arousal: The greater drivers’ trust in the system and the lower their arousal, the more did they rely on the system. Individual driver variables (driving style) explained a significant proportion of the variance in drivers’ trust in the lane keeping assistance systems. (replaced because a new publisher)
15

Drivers’ reliance on lane keeping assistance systems as a function of the level of assistance

Popken, Anke 03 May 2010 (has links) (PDF)
Advanced driver assistance systems are increasingly built in vehicles with the aim to support drivers while driving, to reduce driver errors and thereby to increase traffic safety. At present, these systems are often designed to warn drivers of specific safety risks (e.g., of an imminent departure from the driving lane). However, there is a trend towards systems that more strongly intervene in driving and that hence, automate parts of the driving task (e.g., autonomously keep the vehicle within the driving lane). However, research on human-machine interaction has shown that automation does not necessarily increase safety, but that it may also lead to unanticipated side effects on performance and safety to the extent that humans adapt to the changing task demands. A major concern in road traffic is that drivers rely too heavily on driver assistance systems, become less actively involved in the driving task, and divert their attention to things unrelated to driving. Thus, in the case of system malfunctions or failures, drivers possibly may not be prepared to intervene timely and accordingly and to regain control over the vehicle, respectively. The aim of this dissertation was to investigate changes in drivers’ active engagement in the driving task as a function of the degree to which they are supported by a driver assistance system (i.e., as a function of the degree to which the system automates the driving task). Drivers’ active task engagement was studied by referring to two theoretical concepts: a) drivers’ reliance (on a system) and b) drivers’ situation awareness. Based on an extensive review of previous research on automation, a conceptual theoretical framework was developed that links changes in operators’ active task engagement to human adaptation processes on different levels in response to the changing task demands due to automation. Among them are changes in human attitudes as well as in cognitive, motivational and energetic processes. In order to determine the relative influence of these processes, a range of objective and subjective measures was collected. The essential part of the dissertation is an extensive driving simulator study in an advanced moving-base driving simulator at VTI (Swedish National Road and Transport Research Institute) in Linköping, Sweden. Two lateral support systems (a Heading Control system and a Lane Departure Warning system) were implemented which assisted drivers to different degrees in lane keeping. Contrary to most previous automation studies, drivers’ reliance on the lane keeping assistance systems and their situation awareness were studied by using process-oriented performance-based measures. Drivers’ reliance on the lane keeping assistance systems was assessed by eye glance behaviour measures indicating drivers’ preparedness to allocate their visual attention away from the road scene to an in-vehicle secondary task. Drivers’ situation awareness was assessed by behavioural measures of the latency and magnitude of drivers’ initial reactions to unexpected critical driving situations. A major finding of the study was that drivers differed significantly in their reliance on a high level of lane keeping assistance. This interindividual variance in drivers’ reliance on higher-level assistance could be best explained by drivers’ trust in the system and their energetic arousal: The greater drivers’ trust in the system and the lower their arousal, the more did they rely on the system. Individual driver variables (driving style) explained a significant proportion of the variance in drivers’ trust in the lane keeping assistance systems. / Fahrerassistenzsysteme werden zunehmend in Fahrzeuge eingebaut mit dem Ziel, den Fahrer beim Fahren zu unterstützen, Fahrfehler zu vermeiden und damit die Fahrsicherheit zu erhöhen. Derzeit sind häufig Systeme im Einsatz, die den Fahrer vor bestimmten Sicherheitsrisiken warnen (z.B. vor einem unbeabsichtigten Verlassen der Fahrspur). Der Trend geht aber hin zu Systemen, die stärker ins Fahrgeschehen eingreifen und somit Teile der Fahraufgabe automatisieren (z.B. selbständig die Spurhaltung des Fahrzeugs übernehmen). Aus der Forschung zur Mensch-Maschine Interaktion ist jedoch bekannt, dass Automatisierung nicht zwangsläufig zur Erhöhung von Sicherheit führt, sondern dass sie vielmehr auch unerwünschte Nebeneffekte für Performanz und Sicherheit mit sich bringen kann in dem Maße, wie Menschen an die veränderten Aufgabenanforderungen adaptieren. Im Straßenverkehr wird insbesondere befürchtet, dass Fahrer sich zu stark auf Fahrerassistenzsysteme verlassen, sich teilweise aus der Fahraufgabe zurückziehen („abschalten“) und ihre Aufmerksamkeit fahrfremden Dingen widmen. Dies kann unter Umständen dazu führen, dass Fahrer im Falle von Systemfehlern oder –ausfällen nicht mehr in der Lage sind rechtzeitig und angemessen einzugreifen bzw. die Kontrolle über das Fahrzeug zu übernehmen. Ziel der Dissertation war es zu untersuchen, inwieweit sich die Involviertheit von Fahrern in die Fahraufgabe verändert je stärker sie durch ein Assistenzsystem unterstützt werden (d.h., je stärker das System Teile der Fahraufgabe automatisiert). Um dies zu untersuchen wurden zwei theoretische Konzepte herangezogen: a) das Verlassen der Fahrer (auf ein System) und b) das Situationsbewusstsein der Fahrer. Basierend auf einer umfassenden Analyse der Forschungsliteratur zum Thema Automatisierung wurde ein theoretisches Rahmenmodell entwickelt, welches Veränderungen in der Involviertheit des Fahrers in die Fahraufgabe auf menschliche Adaptationsprozesse auf verschiedenen Ebenen zurückführt, die sich in Folge der veränderten Aufgaben­anforderungen durch zunehmende Automatisierung ergeben. Dazu zählen Veränderungen in Einstellungen, sowie in kognitiven, energetischen, und motivationalen Prozessen. Um Veränderungen in diesen Prozessen zu untersuchen, wurde eine Vielzahl an objektiven und subjektiven Maßen erhoben. Hauptgegenstand der Dissertation ist eine umfangreiche Fahrsimulatorstudie im Fahrsimulator mit Bewegungsplattform bei VTI (Swedish National Road and Transport Research Institute) in Linköping, Schweden. Dabei kamen zwei Querführungsassistenzsysteme (ein Heading Control System und ein Lane Departure Warning System) zum Einsatz, die den Fahrer in unterschiedlichem Maße bei der Spurhaltung unterstützten. Im Gegensatz zu einem Großteil der bisherigen Studien wurden prozessorientierte Performanzmaße zur Erfassung des Verlassens der Fahrer auf die Assistenzsysteme und des Situationsbewusstseins der Fahrer verwendet. Das Verlassen der Fahrer auf die Querführungsassistenzsysteme wurde durch Blickverhaltensmaße über die Bereitschaft der Fahrer erfasst, ihre visuelle Aufmerksamkeit von der Straße ab hin zu einer Zweitaufgabe im Fahrzeuginnenraum zu wenden. Zur Messung des Situationsbewusstseins der Fahrer wurden Fahrverhaltensmaße herangezogen welche als Indikator für die Schnelligkeit und Abruptheit der Reaktionen der Fahrer auf unerwartete kritische Fahrsituationen dienten. Ein Hauptbefund der Dissertation war, dass die Fahrer sich signifikant im Ausmaß ihres Verlassens auf einen hohen Grad an Assistenz unterschieden. Diese interindividuelle Varianz im Verlassen der Fahrer auf einen hohen Grad an Assistenz konnte am besten durch das Vertrauen der Fahrer in das Querführungsassistenzsystem und ihr Aktivierungsniveau erklärt werden: Je höher das Vertrauen der Fahrer in das System und je geringer ihr Aktivierungsniveau, desto stärker verließen sie sich auf das System. Individuelle Fahrermerkmale (Fahrstil) erklärten einen signifikanten Anteil der Varianz im Vertrauen der Fahrer in die Spurhalteassistenzsysteme.
16

Drivers’ reliance on lane keeping assistance systems as a function of the level of assistance

Popken, Anke 08 July 2009 (has links)
Fahrerassistenzsysteme werden zunehmend in Fahrzeuge eingebaut mit dem Ziel, den Fahrer beim Fahren zu unterstützen, Fahrfehler zu vermeiden und damit die Fahrsicherheit zu erhöhen. Derzeit sind häufig Systeme im Einsatz, die den Fahrer vor bestimmten Sicherheitsrisiken warnen (z.B. vor einem unbeabsichtigten Verlassen der Fahrspur). Der Trend geht aber hin zu Systemen, die stärker ins Fahrgeschehen eingreifen und somit Teile der Fahraufgabe automatisieren (z.B. selbständig die Spurhaltung des Fahrzeugs übernehmen). Aus der Forschung zur Mensch-Maschine Interaktion ist jedoch bekannt, dass Automatisierung nicht zwangsläufig zur Erhöhung von Sicherheit führt, sondern dass sie vielmehr auch unerwünschte Nebeneffekte für Performanz und Sicherheit mit sich bringen kann in dem Maße, wie Menschen an die veränderten Aufgabenanforderungen adaptieren. Im Straßenverkehr wird insbesondere befürchtet, dass Fahrer sich zu stark auf Fahrerassistenzsysteme verlassen, sich teilweise aus der Fahraufgabe zurückziehen („abschalten“) und ihre Aufmerksamkeit fahrfremden Dingen widmen. Dies kann unter Umständen dazu führen, dass Fahrer im Falle von Systemfehlern oder –ausfällen nicht mehr in der Lage sind rechtzeitig und angemessen einzugreifen bzw. die Kontrolle über das Fahrzeug zu übernehmen. Ziel der Dissertation war es zu untersuchen, inwieweit sich die Involviertheit von Fahrern in die Fahraufgabe verändert je stärker sie durch ein Assistenzsystem unterstützt werden (d.h., je stärker das System Teile der Fahraufgabe automatisiert). Um dies zu untersuchen wurden zwei theoretische Konzepte herangezogen: a) das Verlassen der Fahrer (auf ein System) und b) das Situationsbewusstsein der Fahrer. Basierend auf einer umfassenden Analyse der Forschungsliteratur zum Thema Automatisierung wurde ein theoretisches Rahmenmodell entwickelt, welches Veränderungen in der Involviertheit des Fahrers in die Fahraufgabe auf menschliche Adaptationsprozesse auf verschiedenen Ebenen zurückführt, die sich in Folge der veränderten Aufgaben­anforderungen durch zunehmende Automatisierung ergeben. Dazu zählen Veränderungen in Einstellungen, sowie in kognitiven, energetischen, und motivationalen Prozessen. Um Veränderungen in diesen Prozessen zu untersuchen, wurde eine Vielzahl an objektiven und subjektiven Maßen erhoben. Hauptgegenstand der Dissertation ist eine umfangreiche Fahrsimulatorstudie im Fahrsimulator mit Bewegungsplattform bei VTI (Swedish National Road and Transport Research Institute) in Linköping, Schweden. Dabei kamen zwei Querführungsassistenzsysteme (ein Heading Control System und ein Lane Departure Warning System) zum Einsatz, die den Fahrer in unterschiedlichem Maße bei der Spurhaltung unterstützten. Im Gegensatz zu einem Großteil der bisherigen Studien wurden prozessorientierte Performanzmaße zur Erfassung des Verlassens der Fahrer auf die Assistenzsysteme und des Situationsbewusstseins der Fahrer verwendet. Das Verlassen der Fahrer auf die Querführungsassistenzsysteme wurde durch Blickverhaltensmaße über die Bereitschaft der Fahrer erfasst, ihre visuelle Aufmerksamkeit von der Straße ab hin zu einer Zweitaufgabe im Fahrzeuginnenraum zu wenden. Zur Messung des Situationsbewusstseins der Fahrer wurden Fahrverhaltensmaße herangezogen welche als Indikator für die Schnelligkeit und Abruptheit der Reaktionen der Fahrer auf unerwartete kritische Fahrsituationen dienten. Ein Hauptbefund der Dissertation war, dass die Fahrer sich signifikant im Ausmaß ihres Verlassens auf einen hohen Grad an Assistenz unterschieden. Diese interindividuelle Varianz im Verlassen der Fahrer auf einen hohen Grad an Assistenz konnte am besten durch das Vertrauen der Fahrer in das Querführungsassistenzsystem und ihr Aktivierungsniveau erklärt werden: Je höher das Vertrauen der Fahrer in das System und je geringer ihr Aktivierungsniveau, desto stärker verließen sie sich auf das System. Individuelle Fahrermerkmale (Fahrstil) erklärten einen signifikanten Anteil der Varianz im Vertrauen der Fahrer in die Spurhalteassistenzsysteme. (ersetzt wegen neuem Herausgeber) / Advanced driver assistance systems are increasingly built in vehicles with the aim to support drivers while driving, to reduce driver errors and thereby to increase traffic safety. At present, these systems are often designed to warn drivers of specific safety risks (e.g., of an imminent departure from the driving lane). However, there is a trend towards systems that more strongly intervene in driving and that hence, automate parts of the driving task (e.g., autonomously keep the vehicle within the driving lane). However, research on human-machine interaction has shown that automation does not necessarily increase safety, but that it may also lead to unanticipated side effects on performance and safety to the extent that humans adapt to the changing task demands. A major concern in road traffic is that drivers rely too heavily on driver assistance systems, become less actively involved in the driving task, and divert their attention to things unrelated to driving. Thus, in the case of system malfunctions or failures, drivers possibly may not be prepared to intervene timely and accordingly and to regain control over the vehicle, respectively. The aim of this dissertation was to investigate changes in drivers’ active engagement in the driving task as a function of the degree to which they are supported by a driver assistance system (i.e., as a function of the degree to which the system automates the driving task). Drivers’ active task engagement was studied by referring to two theoretical concepts: a) drivers’ reliance (on a system) and b) drivers’ situation awareness. Based on an extensive review of previous research on automation, a conceptual theoretical framework was developed that links changes in operators’ active task engagement to human adaptation processes on different levels in response to the changing task demands due to automation. Among them are changes in human attitudes as well as in cognitive, motivational and energetic processes. In order to determine the relative influence of these processes, a range of objective and subjective measures was collected. The essential part of the dissertation is an extensive driving simulator study in an advanced moving-base driving simulator at VTI (Swedish National Road and Transport Research Institute) in Linköping, Sweden. Two lateral support systems (a Heading Control system and a Lane Departure Warning system) were implemented which assisted drivers to different degrees in lane keeping. Contrary to most previous automation studies, drivers’ reliance on the lane keeping assistance systems and their situation awareness were studied by using process-oriented performance-based measures. Drivers’ reliance on the lane keeping assistance systems was assessed by eye glance behaviour measures indicating drivers’ preparedness to allocate their visual attention away from the road scene to an in-vehicle secondary task. Drivers’ situation awareness was assessed by behavioural measures of the latency and magnitude of drivers’ initial reactions to unexpected critical driving situations. A major finding of the study was that drivers differed significantly in their reliance on a high level of lane keeping assistance. This interindividual variance in drivers’ reliance on higher-level assistance could be best explained by drivers’ trust in the system and their energetic arousal: The greater drivers’ trust in the system and the lower their arousal, the more did they rely on the system. Individual driver variables (driving style) explained a significant proportion of the variance in drivers’ trust in the lane keeping assistance systems. (replaced because a new publisher)
17

Drivers’ reliance on lane keeping assistance systems as a function of the level of assistance

Popken, Anke 08 July 2009 (has links)
Advanced driver assistance systems are increasingly built in vehicles with the aim to support drivers while driving, to reduce driver errors and thereby to increase traffic safety. At present, these systems are often designed to warn drivers of specific safety risks (e.g., of an imminent departure from the driving lane). However, there is a trend towards systems that more strongly intervene in driving and that hence, automate parts of the driving task (e.g., autonomously keep the vehicle within the driving lane). However, research on human-machine interaction has shown that automation does not necessarily increase safety, but that it may also lead to unanticipated side effects on performance and safety to the extent that humans adapt to the changing task demands. A major concern in road traffic is that drivers rely too heavily on driver assistance systems, become less actively involved in the driving task, and divert their attention to things unrelated to driving. Thus, in the case of system malfunctions or failures, drivers possibly may not be prepared to intervene timely and accordingly and to regain control over the vehicle, respectively. The aim of this dissertation was to investigate changes in drivers’ active engagement in the driving task as a function of the degree to which they are supported by a driver assistance system (i.e., as a function of the degree to which the system automates the driving task). Drivers’ active task engagement was studied by referring to two theoretical concepts: a) drivers’ reliance (on a system) and b) drivers’ situation awareness. Based on an extensive review of previous research on automation, a conceptual theoretical framework was developed that links changes in operators’ active task engagement to human adaptation processes on different levels in response to the changing task demands due to automation. Among them are changes in human attitudes as well as in cognitive, motivational and energetic processes. In order to determine the relative influence of these processes, a range of objective and subjective measures was collected. The essential part of the dissertation is an extensive driving simulator study in an advanced moving-base driving simulator at VTI (Swedish National Road and Transport Research Institute) in Linköping, Sweden. Two lateral support systems (a Heading Control system and a Lane Departure Warning system) were implemented which assisted drivers to different degrees in lane keeping. Contrary to most previous automation studies, drivers’ reliance on the lane keeping assistance systems and their situation awareness were studied by using process-oriented performance-based measures. Drivers’ reliance on the lane keeping assistance systems was assessed by eye glance behaviour measures indicating drivers’ preparedness to allocate their visual attention away from the road scene to an in-vehicle secondary task. Drivers’ situation awareness was assessed by behavioural measures of the latency and magnitude of drivers’ initial reactions to unexpected critical driving situations. A major finding of the study was that drivers differed significantly in their reliance on a high level of lane keeping assistance. This interindividual variance in drivers’ reliance on higher-level assistance could be best explained by drivers’ trust in the system and their energetic arousal: The greater drivers’ trust in the system and the lower their arousal, the more did they rely on the system. Individual driver variables (driving style) explained a significant proportion of the variance in drivers’ trust in the lane keeping assistance systems. / Fahrerassistenzsysteme werden zunehmend in Fahrzeuge eingebaut mit dem Ziel, den Fahrer beim Fahren zu unterstützen, Fahrfehler zu vermeiden und damit die Fahrsicherheit zu erhöhen. Derzeit sind häufig Systeme im Einsatz, die den Fahrer vor bestimmten Sicherheitsrisiken warnen (z.B. vor einem unbeabsichtigten Verlassen der Fahrspur). Der Trend geht aber hin zu Systemen, die stärker ins Fahrgeschehen eingreifen und somit Teile der Fahraufgabe automatisieren (z.B. selbständig die Spurhaltung des Fahrzeugs übernehmen). Aus der Forschung zur Mensch-Maschine Interaktion ist jedoch bekannt, dass Automatisierung nicht zwangsläufig zur Erhöhung von Sicherheit führt, sondern dass sie vielmehr auch unerwünschte Nebeneffekte für Performanz und Sicherheit mit sich bringen kann in dem Maße, wie Menschen an die veränderten Aufgabenanforderungen adaptieren. Im Straßenverkehr wird insbesondere befürchtet, dass Fahrer sich zu stark auf Fahrerassistenzsysteme verlassen, sich teilweise aus der Fahraufgabe zurückziehen („abschalten“) und ihre Aufmerksamkeit fahrfremden Dingen widmen. Dies kann unter Umständen dazu führen, dass Fahrer im Falle von Systemfehlern oder –ausfällen nicht mehr in der Lage sind rechtzeitig und angemessen einzugreifen bzw. die Kontrolle über das Fahrzeug zu übernehmen. Ziel der Dissertation war es zu untersuchen, inwieweit sich die Involviertheit von Fahrern in die Fahraufgabe verändert je stärker sie durch ein Assistenzsystem unterstützt werden (d.h., je stärker das System Teile der Fahraufgabe automatisiert). Um dies zu untersuchen wurden zwei theoretische Konzepte herangezogen: a) das Verlassen der Fahrer (auf ein System) und b) das Situationsbewusstsein der Fahrer. Basierend auf einer umfassenden Analyse der Forschungsliteratur zum Thema Automatisierung wurde ein theoretisches Rahmenmodell entwickelt, welches Veränderungen in der Involviertheit des Fahrers in die Fahraufgabe auf menschliche Adaptationsprozesse auf verschiedenen Ebenen zurückführt, die sich in Folge der veränderten Aufgaben­anforderungen durch zunehmende Automatisierung ergeben. Dazu zählen Veränderungen in Einstellungen, sowie in kognitiven, energetischen, und motivationalen Prozessen. Um Veränderungen in diesen Prozessen zu untersuchen, wurde eine Vielzahl an objektiven und subjektiven Maßen erhoben. Hauptgegenstand der Dissertation ist eine umfangreiche Fahrsimulatorstudie im Fahrsimulator mit Bewegungsplattform bei VTI (Swedish National Road and Transport Research Institute) in Linköping, Schweden. Dabei kamen zwei Querführungsassistenzsysteme (ein Heading Control System und ein Lane Departure Warning System) zum Einsatz, die den Fahrer in unterschiedlichem Maße bei der Spurhaltung unterstützten. Im Gegensatz zu einem Großteil der bisherigen Studien wurden prozessorientierte Performanzmaße zur Erfassung des Verlassens der Fahrer auf die Assistenzsysteme und des Situationsbewusstseins der Fahrer verwendet. Das Verlassen der Fahrer auf die Querführungsassistenzsysteme wurde durch Blickverhaltensmaße über die Bereitschaft der Fahrer erfasst, ihre visuelle Aufmerksamkeit von der Straße ab hin zu einer Zweitaufgabe im Fahrzeuginnenraum zu wenden. Zur Messung des Situationsbewusstseins der Fahrer wurden Fahrverhaltensmaße herangezogen welche als Indikator für die Schnelligkeit und Abruptheit der Reaktionen der Fahrer auf unerwartete kritische Fahrsituationen dienten. Ein Hauptbefund der Dissertation war, dass die Fahrer sich signifikant im Ausmaß ihres Verlassens auf einen hohen Grad an Assistenz unterschieden. Diese interindividuelle Varianz im Verlassen der Fahrer auf einen hohen Grad an Assistenz konnte am besten durch das Vertrauen der Fahrer in das Querführungsassistenzsystem und ihr Aktivierungsniveau erklärt werden: Je höher das Vertrauen der Fahrer in das System und je geringer ihr Aktivierungsniveau, desto stärker verließen sie sich auf das System. Individuelle Fahrermerkmale (Fahrstil) erklärten einen signifikanten Anteil der Varianz im Vertrauen der Fahrer in die Spurhalteassistenzsysteme.

Page generated in 0.105 seconds