• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 1
  • Tagged with
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Of N=1 supersymmetric gauge theories and localization / Des théories de jauge supersymétriques et la localisation

Wens, Vincent 10 September 2009 (has links)
In this thesis, we study certain non-perturbative aspects of N=1 gauge theories. We show how to compute the expectation values of chiral operators (i.e., those that preserve the anti-chiral supercharges) exactly from a first-principle approach based on the path integral over the microscopic fields. The text is divided into two parts. The first one consists of an original introduction to the tools that underlie the researches and results obtained during this thesis. After a general introduction, we present some methods to obtain exact results. Covered topics include instantons, N=2 supersymmetry and localization, N=1 supersymmetry and holomorphy, and finally the Dijgraaf-Vafa matrix model formalism and the perturbative generalized Konishi anomaly equations. These preliminaries were chosen to enlighten the presentation of our results. A brief overview of our results is then. This includes localization in some N=1 gauge theories, its applications to the computation of chiral correlators as well as a non-perturbative discussion of the generalized Konishi equations and of the Dijkgraaf-Vafa glueball superpotential. We insist on the ideas and the results, postponing the details for the second part, which consists of a faithful reproduction of the papers published during this thesis and in which the author has been involved. / Dans cette thèse, nous étudions certains aspects non-perturbatifs des théories de jauge supersymétriques N=1. Plus précisemment, nous montrons comment les valeurs moyennes des opérateurs chiraux (qui préservent la moitié des supercharges) dans les vides quantiques peuvent ^etre calculées sans approximations, à partir d'une approche basée sur l'intégrale fonctionnelle sur les champs microscopiques. Ce mémoire est divisé en deux parties. La première consiste en une introduction à l'approche microscopique des théories de jauge supersymétriques. Une grande fraction de celle-ci est dédiée à la présentation des concepts et méthodes qui sont à la base du développement de ce formalisme et de nos recherches. Ceci inclut les instantons, la supersymétrie N=2 et la localisation dans l'intégrale fonctionnelle, la supersymétrie N=1 et l'holomorphie, et enfin l'approche de Dijkgraaf-Vafa basée sur un modèle de matrices et les équations d'anomalie généralisées de Konishi. Ensuite, nous présentons le formalisme microscopique et les résultats obtenus durant cette thèse. Nous expliquons comment utiliser la technique de localisation dans certaines théories de jauge N=1 et comment l'appliquer au calcul des valeurs moyennes des opérateurs chiraux. Nous discutons également de façon non-perturbative les équations d'anomalie généralisées de Konishi et le superpotentiel de Dijkgraaf-Vafa. La plupart des résultats exacts connus dans les théories de jauge N=1 sont reproduits, dont la condensation des gluinos et la brisure de la symétrie chirale. Nous insistons sur les idées et les résultats plutôt que sur les détails techniques. Ceux-ci sont décrits dans la seconde partie de ce mémoire, qui consiste en une reproduction fidèle des travaux publiés durant cette thèse.
2

Brisure de symétries en théorie des supercordes : applications en cosmologie et en physique des particules

Catelin-Jullien, Tristan 30 October 2008 (has links) (PDF)
Cette thèse est consacrée à l'étude d'applications de la théorie des cordes dans deux domaines de la physique fondamentale : la physique des particules et la cosmologie. Le principe unificateur de nos deux travaux est l'utilisation en théorie des cordes du mécanisme, initialement introduit en théorie des champs, de brisure spontanée de (super)symétrie.<br /><br />Nous commençons par une présentation générale de la théorie des cordes, principalement focalisée sur les concepts que nous manierons.<br />Nous introduisons ensuite notre premier travail, dans lequel nous exhibons une dualité de l'espace des vides des théories de supercordes hétérotiques N=1, qui relie les représentations spinorielles et vectorielles du groupe de grande unification. <br />Dans un second travail, nous nous intéressons cette fois à la modélisation par la théorie des supercordes d'une évolution cosmologique à température non nulle et en présence d'une échelle de brisure de supersymétrie. Nous donnons également des arguments pour une stabilisation des divers modules de compactification.
3

Duality web between little string theories of type A / Dualités entre théories de petites cordes de type A

Bastian, Brice 06 September 2019 (has links)
La théorie des cordes est un de nos meilleurs candidats pour une théorie quantique de la gravité. A ce jour elle n'a pas encore été conclusive à propose de ce sujet. Malgré cela, on a réalisé qu'on peut en tirer des informations sur tout une variété de sujets, dont notamment les théories de jauges supersymétriques, en étudiant la limite de basse énergie dans le volume d'univers des branes. Cette immersion des théories de jauges en théorie des cordes nous fournit un autre point de vue. Ce dernier nous permet souvent de prendre une approche plus géométrique pour obtenir de nouveaux résultats sinon inaccessible par des méthodes plus conventionnelles. Même en absence de vérification expérimentale de la supersymétrie, sa présence dans cette classe de théories de jauge nous fournit un terrain de jeux propice pour tester de nouvelles méthodes d'une manière efficace. En effet, la présence de la supersymétrie donne une structure additionnelle qui rend la théorie plus rigide. Cela simplifie les calculs et rend des résultats plus accessibles. On peut oser de dire que si on n'arrive pas à calculer un certain résultat en présence de supersymétrie, il y a très peu de chance d'y arriver sans. L'approche par la théorie des cordes le rend possible de découvrir des symétries cachées ou de comprendre des symétries connues d'une autre manière.Une classe de théories quantique intéressantes qui sont présentes en théories des cordes, c'est les théories de petites cordes. Ces dernières ont été découverte il y a deux décennies. Ces théories en six dimensions ont été construite une première fois comme théories dans le volume d'universe de branes NS5 dans le cadre de la théorie des cordes IIB en prenant la limite du couplage de la corde qui tend vers zéro. Dans cette limite, la théorie résultant reste non-trivial mais les interactions en dehors de la brane sont supprimées, notamment la gravité. Comme le nom le suggère, ces théories contiennent des cordes qu'on appelle petites cordes. La tension des petites cordes est proportionnelle à l'échelle naturelle de la corde. En plus, ces théories profitent de la T-dualité comme les théories de cordes critiques. Elle sont donc des théories quantiques non-locales. Leur complexité se situe entre celle des théories quantiques locales et celle de la théorie des cordes complète. Elles sont donc des candidates intéressantes pour étudier la dynamique dans le volume d'univers de la brane NS5. Pour des énergies inférieures à l'échelle de la corde, elles ont une description en termes de théories de jauges symétriques de type quiver. On peut donc également obtenir des informations sur ces dernières. Cette description locale n'est plus valable une fois l'échelle de la corde atteinte.Le but principal de cette thèse est d'étudier des dualités entre le théories de petites cordes en utilisant différentes constructions disponible en théorie des cordes. Cela nous permet d'attaquer le problème d'angles différents et de faire un lien avec des structures géométriques. En conséquence on peut analyser différentes relation parmi les théories de petites cordes. On confirme ensuite la validité des dualités qu'on obtient en utilisant la fonction de partition instantonique. Cet object est complètement non-perturbative et établit ces dualités comme résultat exact. Cette structure de dualités s'étend naturellement aux descriptions de basse énergie en terme de théories de jauges supersymétriques. De plus, on étudie les conséquences directes du réseaux de dualités qu'on a découvert. / String theory remains one of our best candidates for a theory of quantum gravity. Until now it has not lived up to this goal. However, along the way it was realized that string theory can give us valu-able insights into a variety of subjects among which supersymmetric gauge theories by studying the low-energy worldvolume dynamics of branes. This embedding of gauge theories into string theory provides us with a different viewpoint that often allows us to use powerful geometric considerati-ons in order to obtain new results that are inaccessible from conventional methods. Even in the ab-sence of experimental confirmation of supersymmetry, its presence in this class of gauge theories provides us with a playground where different methods can be tested in an efficient way. Indeed, supersymmetry provides additional structure, rendering the underlying theory more rigid and thus simplifying computations and making results more accessible. One could dare to say that when a certain result can not be calculated in the presence of supersymmetry, there is probably not much hope of achieving it without supersymmetry. This stringy approach to gauge theories makes it pos-sible to unravel hidden dualities or to understand already known ones from a different perspective. An interesting class of quantum theories that are embedded into string theory are the so called little string theories. They have been discovered two decades ago. These six-dimensional theories were first obtained as the worldvolume theory of a stack of NS5 branes in the context of Type II string theory trough a particular decoupling limit that sends the string coupling constant to zero while kee-ping at the same time the string scale finite. In this limit, the resulting theory remains interacting but the bulk dynamics is decoupled, in particular gravity. As their name suggests, they contain strings. The tension of the little strings is proportional to the string scale, which is the only intrinsic scale in the theory. Furthermore, the little string theories enjoy T-duality similar to the critical string theory. They are thus non-local quantum theories. So the complexity of little string theory lies between that of local quantum field theories and full fledged critical string theory. This makes them interesting candidates for studying stringy phenomena in an easier setup where gravity is absent and to learn more about the worldvolume dynamics of the NS5 brane. At energies far below the string scale, they have a low-energy description in terms of quiver gauge theories, so their study can also give us insights into these kinds of theories. This local description breaks down as we reach the string scale and we must rely on the full little string theories. The main goal of this thesis is to study dualities between little string theories by using different dual constructions available in string theory. These allow us to attack the problem from different angles and they establish also a connection to geometric structures. This makes it possible to systematically analyse relations among different little string theories. We then confirm the validity of the newly found duality relations by using the so called instanton partition function. The latter is a completely non-perturbative object allowing us to establish the dualities as an exact result. This duality structure naturally extends to the low-energy description in terms of supersymmetric quiver gauge theories. Furthermore, we study the direct consequences of this duality web. We find interesting cases where the dimensional reduction from six to five dimensions simultaneously reduces the rank of the group and changes the matter content. Another result that we find is the presence of a hidden dihedral symmetry which acts in a highly non-trivial fashion on the spectrum of the underlying gauge theories.
4

Sous-espaces hilbertiens, sous-dualités et applications

MARY, Xavier 18 December 2003 (has links) (PDF)
L'étude des fonctions de deux variables et des opérateurs intégraux associés, ou l'étude directe des noyaux au sens de L. Schwartz (définis comme opérateurs faiblement continus du dual topologique d'un espace vectoriel localement convexe dans lui même), est depuis plus d'un demi-siècle une branche des mathématiques en pleine expansion notamment dans le domaine des distributions, des équations différentielles ou dans le domaine des probabilités avec l'étude des mesures gaussiennes et<br />des processus gaussiens.<br /><br />Les travaux de Moore, Bergman et Aronszajn ont notamment abouti au résultat fondamental suivant qui concerne les noyaux positifs : il est toujours possible de construire un sous-espace préhilbertien à partir d'un noyau positif et, moyennant quelques hypothèses (faibles) supplémentaires, de compléter fonctionnellement cet espace afin d'obtenir alors un espace de Hilbert. Cet espace possède alors la propriété d'être continûment inclus dans l'espace vectoriel localement convexe de départ.<br />Il existe donc une relation forte entre noyaux positifs et espaces hilbertiens. Dans cette thèse, nous nous sommes posés le problème suivant : que se passe t'il si l'on lève l'hypothèse<br />de positivité ? D'hermicité ?<br /><br />Dans cette perspective nous considérons une seconde approche qui consiste à travailler directement sur des espaces vectoriels plutôt que sur les noyaux.<br />Précisément, adoptant une démarche classique en mathématiques, nous étudions les propriétés d'une classe d'espaces vérifiant des hypothèses additionnelles. Partant des espaces de Hilbert continûment inclus dans un espace localement convexe donné, cette approche a conduit aux espaces de Hilbert à noyau reproduisant de N. Aronszajn puis aux sous-espaces hilbertiens de L. Schwartz. Cette théorie est présentée dans la première partie de la thèse, le résultat majeur de cette théorie étant sans doute l'équivalence entre sous-espaces hilbertiens<br />et noyaux positifs, résumé par la phrase suivante :<br /><br />``Il existe une bijection entre sous-espaces hibertiens et noyaux positifs.''<br /><br />Le principal apport à la théorie existante est l'utilisation intensive de systèmes en dualité et de formes bilinéaires (et pas uniquement sesquilinéaires). De manière surprenante,<br />cela conduit à une certaine perte de symétrie qui porte les germes de la théorie des sous-dualités.<br /><br />Dans une seconde partie nous suivons encore les travaux de L. Schwartz et étudions la théorie moins connue des sous-espaces de Krein (ou sous-espaces hermitiens).<br />Les espaces de Krein ressemblent aux espaces de Hilbert mais sont munis d'un produit scalaire qui n'est plus nécessairement positif. Les sous-espaces de Krein constituent donc une première généralisation des sous-espaces hilbertiens. Un des principaux intérêt de l'étude de tels espaces réside en la disparition de l'équivalence fondamentale entre les notions de sous-espaces et de noyaux, même si une relation étroite subsiste. Nous étudions plus particulièrement les similitudes et les différences entre ces deux différentes théories, que nous retrouverons dans la théorie des sous-dualités.<br /><br />La troisième partie généralise la perte de symétrie évoquée dans le chapitre 1. Nous développons les bases d'une théorie non plus basée sur une structure hilbertienne, mais sur une certaine dualité.<br />Nous développons ainsi le concept de sous-dualité d'un espace vectoriel localement convexe (ou d'un système dual) et de son noyau associé.<br />Une sous-dualité est définie par un système de deux espaces en dualité vérifiant des conditions d'inclusion algébrique ou<br />topologique. Plus précisément :<br />un système dual $(E,F)$ est une sous-dualité d'un espace localement convexe $\cE$ (ou plus généralement d'un système dual $(\cE,\cF)$) si $E$ et $F$ sont faiblement continûment inclus dans $\cE$.<br />Dans ce cas, il est possible d'associer à cette sous-dualité un unique noyau d'image dense dans la sous-dualité. Nous étudions également l'effet d'une application linéaire faiblement continue. Il devient alors possible (moyennant une relation d'équivalence) de munir l'ensemble des sous-dualités d'une structure d'espace vectoriel qui le rend isomorphe algébriquement à l'espace vectoriels des noyaux. Nous exhibons ensuite un représentant canonique de ces classes d'équivalences, ce qui permet d'établir une bijection entre sous-dualités canoniques et noyaux.<br /><br />Une quatrième et dernière partie propose quelques applications. Le premier champ d'application possible est une généralisation du lien entre sous-espaces hilbertiens et mesures gaussiennes. Le second est l'étude d'opérateurs particuliers, les opérateurs dans les sous-dualités d'évaluation (sous-dualités de $\KK^(\Omega)$) et les opérateurs différentiels.
5

Amplitudes Topologiques et l'Action Effective de la Théorie des Cordes

Zein Assi, Ahmad 11 December 2013 (has links) (PDF)
Cette thèse est dédiée à l'étude d'une classe de couplages dans l'action effective de la théorie des cordes qui se trouvent au croisement entre la théorie des cordes topologique et les théories de jauge supersymétriques. Ces couplages généralisent un ensemble de couplages gravitationnels qui calculent la fonction de partition de la théorie des cordes topologique. Dans la limite de théorie des champs, ces derniers reproduisent la fonction de partition de la théorie de jauge dans le fond Oméga lorsque l'un des paramètres de ce dernier, epsilon_+ , est égal à zéro. Cela suggère naturellement l'existence d'une généralisation dénommée la corde topologique raffinée. Les couplages étudiés dans ce manuscrit sont caractérisés par un multiplet vectoriel supplémentaire et sont calculés, en théorie des cordes, aux niveaux perturbatif et non-perturbatif. De plus, leur limite de théorie des champs donne la fonction de partition de la théorie des champs dans un fond Oméga général. Ainsi, ces couplages ouvrent de nouvelles perspectives pour la définition, au niveau de la surface d'univers, de la théorie des cordes topologiques raffinée.
6

Of N=1 supersymmetric gauge theories and localization / Des théories de jauge supersymétriques et la localisation

Wens, Vincent 10 September 2009 (has links)
In this thesis, we study certain non-perturbative aspects of N=1 gauge theories. We show how to compute the expectation values of chiral operators (i.e. those that preserve the anti-chiral supercharges) exactly from a first-principle approach based on the path integral over the microscopic fields. <p><p>The text is divided into two parts. The first one consists of an original introduction to the tools that underlie the researches and results obtained during this thesis. After a general introduction, we present some methods to obtain exact results. Covered topics include instantons, N=2 supersymmetry and localization,N=1 supersymmetry and holomorphy, and finally the Dijgraaf-Vafa matrix model formalism and the perturbative generalized Konishi anomaly equations. These preliminaries were chosen to enlighten the presentation of our results. A brief overview of our results is then. This includes localization in some N=1 gauge theories, its applications to the computation of chiral correlators as well as a non-perturbative discussion of the generalized Konishi equations and of the Dijkgraaf-Vafa glueball superpotential. We insist on the ideas and the results, postponing the details for the second part, which consists of a faithful reproduction of the papers published during this thesis and in which the author has been involved. /<p><p>Dans cette thèse, nous étudions certains aspects non-perturbatifs des théories de jauge supersymétriques N=1. Plus précisemment, nous montrons comment les valeurs moyennes des opérateurs chiraux (qui préservent la moitié des supercharges) dans les vides quantiques peuvent être calculées sans approximations, à partir d'une approche basée sur l'intégrale fonctionnelle sur les champs microscopiques. <p><p>Ce mémoire est divisé en deux parties. La première consiste en une introduction à l'approche microscopique des théories de jauge supersymétriques. Une grande fraction de celle-ci est dédiée à la présentation des concepts et méthodes qui sont à la base du développement de ce formalisme et de nos recherches. Ceci inclut les instantons, la supersymétrie N=2 et la localisation dans l'intégrale fonctionnelle, la supersymétrie N=1 et l'holomorphie, et enfin l'approche de Dijkgraaf-Vafa basée sur un modèle de matrices et les équations d'anomalie généralisées de Konishi. Ensuite, nous présentons le formalisme microscopique et les résultats obtenus durant cette thèse. Nous expliquons comment utiliser la technique de localisation dans certaines théories de jauge N=1 et comment l'appliquer au calcul des valeurs moyennes des opérateurs chiraux. Nous discutons également de façon non-perturbative les équations d'anomalie généralisées de Konishi et le superpotentiel de Dijkgraaf-Vafa. La plupart des résultats exacts connus dans les théories de jauge N=1 sont reproduits, dont la condensation des gluinos et la brisure de la symétrie chirale.<p>Nous insistons sur les idées et les résultats plutôt que sur les détails techniques. Ceux-ci sont décrits dans la seconde partie de ce mémoire, qui consiste en une reproduction fidèle des travaux publiés durant cette thèse. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
7

Opérateurs monopôles dans les transitions hors d'un liquide de spin de Dirac

Dupuis, Éric 08 1900 (has links)
Dans la description à basse énergie de systèmes fortement corrélés, les champs de jauge peuvent émerger comme excitations collectives couplées à des quasiparticules fractionalisées. En particulier, certains aimants bidimensionnels dits frustrés sont décrits par un liquide de spin de Dirac comportant une symétrie de jauge U(1) compacte. La description infrarouge est donnée par une théorie conforme des champs, soit l'électrodynamique quantique en 2+1 dimensions avec 2N saveurs de fermions sans masse. Dans les aimants typiques, N=2 ou 4. L'aspect compact du champ de jauge implique également l'existence d'excitations topologiques, soit des instantons créés, dans ce contexte, par des opérateurs monopôles. Cette thèse porte sur les transitions de phase quantiques à partir d'un liquide de spin de Dirac et les propriétés des monopôles aux points critiques correspondants. Ces transitions sont induites en activant diverses interactions de type Gross-Neveu. Dans tous les cas à l'étude, la dimension d'échelle des monopôles est obtenue grâce à la correspondance état-opérateur et à un développement en 1/N. L'accent est d'abord mis sur une transition de confinement-déconfinement vers une phase antiferromagnétique décrite par la condensation d'un monopôle. Une levée de dégénérescence est observée au point critique alors que certaines dimensions d'échelle de monopôles sont réduites par rapport à leur valeur dans le liquide de spin de Dirac. Cette hiérarchie est caractérisée quantitativement en comparant les dimensions d'échelle dans des secteurs distincts du spin magnétique à l'ordre dominant en 1/N, puis qualitativement par une analyse en théorie des représentations. Des exposants critiques pour d'autres observables dans la théorie non compacte sont également obtenus. Enfin, deux transitions vers des liquides de spin topologiques, soit le liquide de spin chiral et le liquide de spin Z2, sont considérées. Les dimensions anormales des monopôles sont obtenues à l'ordre sous-dominant en 1/N. Ces résultats permettent de vérifier une dualité conjecturée avec un modèle bosonique et la valeur d'un coefficient universel pour les théories de jauge U(1) / In strongly correlated systems, gauge fields can emerge as collective excitations coupled to fractionalized quasiparticles. In particular, certain frustrated two-dimensional quantum magnets are described by a Dirac spin liquid which has a U(1) gauge symmetry. The infrared description is given by a conformal field theory, namely quantum electrodynamics in 2+1 dimensions with 2N flavours of massless fermions. In typical magnets, N=2 or 4. The compact aspect of the gauge field also implies the existence of topological excitations corresponding to instantons, which are created by monopole operators in this context. This thesis focuses on quantum phase transitions out of a Dirac spin liquid and the properties of monopoles at the corresponding critical points. These transitions are driven by activating various types of Gross-Neveu interactions. In all the cases studied, the scaling dimension of monopoles are obtained using the state-operator correspondence and a 1/N expansion. The confinement-deconfinement transition to an antiferromagnetic order produced by a monopole condensate is first studied. A degeneracy lifting is observed at the critical point, as certain monopoles have their scaling dimension reduced in comparison with the value in the Dirac spin liquid. This hierarchy is charactized quantitatively by comparing monopole scaling dimensions in distinct magnetic spin sector at leading-order in 1/N, and qualitatively by an analysis in representation theory. Critical exponents of various other operators are obtained in the non-compact model. Transitions to two topological spin liquids, namely a chiral spin liquid and a Z2 spin liquid, are also considered. Anomalous dimensions of monopoles are obtained at sub-leading order in 1/N. These results allow the verification of a conjectured duality with a bosonic model and the value of a universal coefficient in U(1) gauge theories.

Page generated in 0.2671 seconds