• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 21
  • 15
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 131
  • 131
  • 131
  • 26
  • 21
  • 21
  • 21
  • 17
  • 17
  • 16
  • 15
  • 15
  • 15
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Characterizing the <em>In-Vitro</em> Morphology and Growth Kinetics of Intermediate Amyloid Aggregates

Hill, Shannon E 05 November 2008 (has links)
The mechanisms linking deposits of insoluble fibrils of amyloid proteins to the debilitating neuronal cell death characteristic of neurodegenerative diseases remain enigmatic. Recent findings suggest that transiently formed intermediate aggregates, and not the prominent neuronal plaques, represent the principal toxic agent. Evaluating the neurotoxicity of intermediate aggregates, however, requires unambiguous characterization of all aggregate structures present, their relative distributions, and how they evolve in time. Hen-egg white lysozyme represents an attractive model for studying intermediate aggregate formation since it is an extensively characterized globular protein, and its human variants can lead to systemic amyloidosis. Combining in-situ dynamic light scattering (DLS) with atomic force microscopy (AFM), we have characterized the morphologies and growth kinetics of intermediate aggregates formed during lysozyme fibrillogenesis. Upon incubation at elevated temperatures, small uniform oligomers form with their numbers increasing for several hours. After a variable lag period protofibrils spontaneously nucleate. The heights and widths of protofibrils closely match those of oligomers. This match in physical dimensions, combined with the delayed onset of protofibril nucleation vs. the continuous formation of oligomers, suggest that protofibrils both nucleate and grow from oligomers. Protofibril morphologies and structures, visualized with AFM, are quite distinct from subsequently emerging mature fibrils. Overall, the evolution of aggregate morphologies during lysozyme fibrillogenesis follows a clear hierarchical pathway: amyloid monomers initially coalesce into oligomers of uniform size. Their steadily increasing numbers eventually induce nucleation and growth of protofibrils. Protofibrils, in turn, nucleate and grow via oligomer addition until they start to self-assemble into micron-sized double-stranded fibrils.
12

Size determination of hyaluronan and multivariate analysis of amyloid prone proteins / Storleksbestämning av hyaluronan och multivariat analys av amyloid benägna proteiner

Malm, Linus January 2011 (has links)
Background.The extracellular matrix surrounds all cells within our bodies. The glycosaminoglycan hyaluronan is a major component in the extracellular matrix. Despite its structural simplicity it has been shown to be involved in several important functions. It is a lubricant and shock absorber, as well as an important player in inflammation and tumor invasion. Many of its functions are closely related to its size and concentration in tissues. Therefore methods for measuring these properties are of great importance to properly understand the role that hyaluronan play in different events. Proteins are found both inside and outside cells, and they have a wide variety of functions. The protein structure and function is determined by the properties of their building blocks, the amino acids. Several diseases have been linked to changes in the amino acid sequence of certain proteins by mutations, causing the proteins to form extracellular deposits of structures called amyloid aggregates. The aim of this thesis is to investigate the function of hyaluronan in cell cultures, develop new methods for size determination hyaluronan and to use multivariate methods to provide prediction and better understanding of factors driving protein amyloid aggregation. Methods.Cardiomyocytes and fibroblast were cultured and stimulated by different growth factors. Hyaluronan was purified and its size and concentration were measured. Crosstalk between cardiomyocytes and fibroblast were investigated and gene expression of hyaluronan synthases was determined. A new method for size measurement of hyaluronan was developed. The amyloid aggregation rate of different mutants of acylphosphatase was predicted by multivariate analysis. Results. Cardiomyocytes stimulated by PDGF-BB produced hyaluronan. Cardiomyocytes could induce fibroblast to increase its hyaluronan production, through an unknown soluble factor. The cardiomyocyte gene expression changed when stimulated by hyaluronan. GEMMA was presented as a new method for size determination of hyaluronan. Amyloid aggregation of different acylphosphatase mutants could be predicted using a multivariate regression model of the physicochemical and structural properties of the amino acid sequence. Conclusion. It was shown that cardiomyocytes are not only able to produce hyaluronan, but also induce an increased hyaluronan production in other cells. GEMMA was proven suitable for size determination of hyaluronan at very low concentrations. Multivariate analysis showed that hydrophobic patterns and charge where the most important factors for amyloid aggregation of acylphosphatase.
13

New Insights into the Mechanisms of Crystallisation and Vitrification - a Dynamic Light Scattering Study of Colloidal Hard Spheres

Martinez, Vincent Arnaud, vincent.martinez@student.rmit.edu.au January 2009 (has links)
This thesis reports on a comprehensive experimental study of the collective dynamics of colloidal hard sphere suspensions. The main quantity measured is the coherent Intermediate Scattering Function (ISF) using a range of techniques based on Dynamic Light Scattering (DLS). The collective dynamics are measured as a function of scattering vector for volume fractions spanning from dilute samples, through the fluid phase and the metastable region, up until deep in the glass region. This work describes two major explorations: (i) the effect of volume of fraction on the q-dependency of the collective dynamics; and (ii) a study of the ageing processes in colloidal glasses. The present work is unique in the application of several advanced experimental techniques, and in the level of averaging that has been carried out, enabling a more sophisticated analysis than has previously been possible. This includes the characterization of non-Fickian processes and the determinatio n of the current-current correlation function (CCCF) in the metastable fluid, and the quantitative characterization of the ageing process in the hard sphere glass. In addition, by combining aspects of the coherent and incoherent ISFs, this work also allows the expression of the collective dynamics in terms of the single particle displacement. The results show a dynamical change at the freezing point (f), which exposes the incapacity of the system to dissipate thermal energy via diffusing momentum currents, i.e. viscous flow. The structural impediments responsible for this, associated with dynamical heterogeneities, begin at the structure factor peak, and spread to other spatial modes as the volume fraction increases. Above the glass transition (g), structural relaxation becomes arrested at all spatial modes probed, i.e. flow is arrested. It is found that, following the quench, samples above the glass volume fraction approach some final
14

Dynamic failure precursors in soft matter / Précurseurs dynamiques de la défaillance dans la matière molle

Aime, Stefano 14 September 2017 (has links)
La fracture des matériaux, omniprésente aussi bien en science des matériaux qu’en géologie, implique souvent des événements soudains et imprévisibles, sans précurseurs détectables macroscopiquement. Une compréhension approfondie des mécanismes microscopiques conduisant in fine à la rupture est requise, mais les expériences restent rares. La détection de la dynamique microscopique dans les échantillons cisaillés est expérimentalement très difficile, car elle nécessite de combiner sensibilité mécanique, qualité optique et exigences strictes sur l’encombrement. Dans ce travail, nous présentons l'une des premières tentatives réussies de mesure des précurseurs microscopiques de fracture dans des matériaux mous modèles, grâce à des mesures de la plasticité microscopique à l'aide d'un nouvel instrument, couplant une cellule de cisaillement à contrainte contrôlée à un appareil de diffusion de lumière statique et dynamique (DLS) à petits angles. Dans un premier temps, nous montrons théoriquement, numériquement et expérimentalement comment la DLS, une technique très puissante difficile à utiliser pour un échantillon sous cisaillement, peut être utilisée comme outil de mesure de la dynamique microscopique dans les systèmes mous sous cisaillement. Pour un solide parfait et un fluide visqueux simple, le champ de déplacement résultant d'une déformation de cisaillement est purement affine. Nous montrons comment les déplacements affines et non affines, qui sont présents dans de nombreuses situations d’intérêt (matériaux élastiquement hétérogènes ou en raison de réarrangements plastiques) peuvent être évalués séparément par DLS et discutons de l'effet des non-idéalités dans des expériences typiques.Ce travail est centré sur un gel colloïdal fractal modèle, dont nous caractérisons la rhéologie linéaire en loi de puissance. Nous montrons que celle-ci est décrite par un modèle phénoménologique Fractional Maxwell (FMM), et discutons la relation possible entre FMM et la structure microscopique du gel.Sous une contrainte de cisaillement constante (expérience de fluage), le gel colloïdal présente une déformation rapide élastique suivie d'un fluage lent en loi de puissance, puis, après plusieurs heures par une accélération du taux de cisaillement, entraînant la rupture retardée du gel. Nos expériences montrent que le premier régime en loi de puissance, bien décrit par la viscoélasticité linéaire, correspond à l'échelle microscopique à une dynamique partiellement nonaffine, mais entièrement réversible. Lorsque la viscoélasticité dévie de la linéarité, une accélération nette, localisée dans le temps de la dynamique non-affine, est observée. Ces réarrangements rapides précèdent la fracture macroscopique du gel de plusieurs heures: ce sont des précurseurs dynamiques de la fracture qui permettent de prédire l’évolution du gel bien avant toute mesure rhéologique.Pour obtenir une image plus complète de la fracture, nous étudions l'apparition de l'irréversibilité lors d’une perturbation cyclique répétée plusieurs fois (expérience de fatigue). En suivant l'évolution stroboscopique du système en fonction de la déformation cumulée, on constate que, au-delà du régime linéaire, le taux de relaxation augmente brusquement, signature de plasticité. Si la contrainte appliquée est suffisamment grande, le gel à long terme montre une rupture retardée, en analogie avec celle observée en fluage. Les différences et similitudes entre les deux mécanismes de fracture sont discutées.Enfin, la généralité des résultats obtenus sur les gels colloïdaux est vérifiée en étudiant comme second système modèle un verre colloïdal, dont la mise en écoulement sous contrainte oscillante est un processus progressif, pour lequel deux modes de relaxation contribuent à la dynamique observée. Les analogies qualitatives trouvées avec des systèmes similaires (par ex. des émulsions concentrées) suggèrent qu'une image unifiée pourrait être obtenue, motivant des recherches futures. / Material failure is ubiquitous, with implications from geology to everyday life and material science. It often involves sudden, unpredictable events, with little or no macroscopically detectable precursors. A deeper understanding of the microscopic mechanisms eventually leading to failure is clearly required, but experiments remain scarce. The detection of microscopic dynamics in samples under shear is experimentally very challenging, because it requires to combine the highest mechanical sensitivity to strict requirements on the geometry of the whole setup and on the quality of the optical interfaces. In this work we present one of the first successful attempts to measure microscopic failure precursors in model soft solids. Here, microscopic plasticity under shear is observed using a novel setup, coupling a custom-made stress controlled shear cell to small angle static and dynamic light scattering (DLS).DLS is a very powerful technique, but its application to materials under shear is not trivial. In a first step we show a theoretical, numerical and experimental investigation of how DLS may be used as a tool to measure the microscopic dynamics in soft systems under shear. In ideal solids and simple viscous fluids, the displacement field resulting from an applied shear deformation is purely affine. Additional non-affine displacements arise in many situations of great interest, for example in elastically heterogeneous materials or due to plastic rearrangements. We show how affine and non-affine displacements can be separately resolved by DLS, and discuss the effect of several non-idealities in typical experiments.As a model system, this work mainly focuses on a fractal colloidal gel. We thoroughly characterize the linear power-law rheology of the gel, we show that it is very accurately described by the phenomenological Fractional Maxwell (FM) model, and we discuss the possible relationship between the FM model and the microscopic structure of the gel.Under a constant shear stress (creep experiment), the colloidal gel exhibits a fast, elastic deformation followed by a slow sublinear power-law creep, which is eventually interrupted after several hours by an upturn in the shear rate, leading to the delayed failure of the material. Our experiments show that the first power-law regime, nicely described by linear viscoelasticity, corresponds at the microscopic scale to partially nonaffine, yet fully reversible dynamics. Upon deviation from the linear viscoelasticity, a sharp acceleration, localized in time of the nonaffine dynamics is observed. These faster rearrangements precede the macroscopic failure of the gel by thousands of seconds: they thus are dynamic precursors of failure that allow one to predict the fate of the gel well before any rheological measurement.To obtain a more comprehensive picture of material failure, we next address the onset of irreversibility under a cyclic perturbation repeated many times (fatigue experiment). By following the stroboscopic evolution of the system as a function of the cumulated deformation, we observe that as soon as the shear amplitude is increased beyond the linear regime the relaxation rate increases abruptly, indicating that irreversible plasticity is at play. If a large enough stress amplitude is applied, the system on the long run displays delayed fatigue failure, with reminiscences of the one observed in creep. Differences and similarities between the two failure mechanisms are discussed.Finally, the generality of the results obtained on colloidal gels is checked by investigating as second model system a soft colloidal glass. In this case, our experiments indicate that oscillatory yielding is a gradual process, where two relaxation modes contribute to the observed dynamics. Qualitative analogies found with similar systems (e.g. concentrated emulsions) suggest that a general picture might be obtained with our study, which motivates ongoing and future investigations.
15

Advanced Characterization of Aqueous Inorganic Nanoscale Clusters

Jackson Jr, Milton 18 August 2015 (has links)
Inorganic nanoscale clusters have garnered significant interest for many practical applications within the fields of materials chemistry, inorganic chemistry, geochemistry, and environmental chemistry. However, the fundamental inner workings of how these materials interact in the solid state and solution continues to be a very elusive problem for scientists. My dissertation focuses on taking non-traditional approaches and characterization techniques to further understand the dynamic interactions of some of the aforementioned clusters. Chapter I is a comprehensive survey and perspective on selected characterization techniques used to study Group 13 aqueous nanoscale clusters and other polyoxometalates in solution. Chapter II focuses on utilizing Raman spectroscopy, infrared spectroscopy, and quantum mechanical computations to unambiguously identify Group 13 tridecameric species in the solid state and aqueous solution. Chapter III discusses the first instance of transmetalation of aqueous aluminum clusters via salt addition of In(NO3)3 in aqueous or methanol. Chapters IV and V explore the effects that aprotic and protic solvents can have on the solution speciation of the flat aluminum tridecamer. Chapter VI discusses the utility of using electrochemically synthesized gallium tridecamer and its functional use as a thin film semiconductor. Chapter VII describes a unique graduate level chemistry course designed to allow students to conduct and generate publication-worthy research within the timeframe of the course. Chapter VIII ventures out beyond the group 13 cluster and introduces techniques used to study the formation and stability of aqueous hafnium clusters. Chapter IX details the synthesis and characterization of rhombic structured copper clusters in the solid state. Finally, chapter X highlights my unfinished projects that can propel future research within the lab. This dissertation includes previously published and unpublished co-authored material.
16

Biophysical Investigation of Amyloid Formation and Their Prion-like Self-replication

Mulaj, Mentor 30 March 2016 (has links)
Growth and deposition of amyloid fibrils, polymers of proteins with a cross beta-sheet structure, are associated with a significant number of human pathologies including Alzheimer’s disease, Parkinson’s disease, prion diseases, type II diabetes, and senile systematic or dialysis-related amyloidoses. The broader objective of my research is to identify the basic mechanisms regulating nucleation and growth of amyloid fibrils. There is increasing evidence that amyloid formation may proceed along at least two distinct assembly pathways for the formation of rigid fibrils. One pathway involves the nucleated polymerization of the characteristic rigid fibrils from partially denatured monomers and the other proceeds via the growth of globular oligomers and their associated curvilinear fibrils (also known as protofibrils) which, in ways yet to be determined, transform into late-stage rigid fibrils. These oligomeric intermediates of fibril assembly, in particular, have been implicated as the predominant aggregate species causing cellular toxicity in amyloid diseases. Yet, amyloid oligomers and curvilinear fibrils are considered transient, metastable aggregates. This raises the question whether and how such transient aggregate species can be responsible for most of the cell/tissue toxicity? In this dissertation, I report on my investigation of several basic questions related to the mechanisms of amyloid formation. Using the model amyloid hen egg-white lysozyme, I participated in research to characterize the distinct kinetics of amyloid formation along distinct assembly pathways, to determine the morphological features of the various aggregate species emerging along either pathway, and to investigate the structural evolution of the monomers from their native state to the amyloid cross- sheet structure (chapter 3). Chapters 4-6 represent the core of my dissertation work. There I investigated whether amyloid aggregates from three different amyloid proteins, formed under denaturing condition, could undergo prion-like proliferation upon return to physiological solution conditions. I was also intimately involved in a project on the conditions inducing amyloid spherulites formation by polyglutamic acid and the mechanisms resulting in the formation of this often-overlooked amyloid aggregate structure (chapter 7). In the appendix I provide a short summary of the various experimental techniques I have used in the above experiments.
17

A study of protein aggregation processes using Dynamic Light Scattering : Validation of the technique and experimental trial with an active pharmaceutical ingredient

Arnroth, Cornelia January 2020 (has links)
Protein pharmaceuticals is one of the fastest growing class of therapeutics today. However, they pose a lot of challenges in production lines due to their poor stability. Protein aggregation is one of the most common results of protein instability and is a risk factor regarding the quality of therapeutics. This master thesis at RISE focused on validating the techniques Dynamic Light Scattering (DLS) and multi angle DLS (MADLS) with respect to detection of aggregation. The model protein B-lactoglobulin was used to assess the robustness and accuracy of DLS. A comparison between two instruments from Malvern, Zetasizer Nano (2006) and Zetasizer Ultra (2018) was done with respect to DLS. It was determined that they were in many ways equivalent, but the newer model Ultra was favourable due to reduced noise and its ability to detect a lower concentration of aggregates. MADLS produced more precise results which is reflected in narrower distributions and has a higher sensitivity than DLS with regards to separating particles near in size. Both techniques proved sensitive enough to differentiate between aggregates and native protein. Experimental trials were performed with an active pharmaceutical ingredient, API. The experimental trials with the API aimed to investigate what conditions and surface-interfaces that might pose a risk for aggregation. Despite efforts put in creating an environment where aggregation could be monitored, aggregation could not be established. Measurements with the API generated less reliable results due to noisy data and a lack of reproducibility between individual measurements.
18

Screening of plant-mediated nanoparticles for antifungal activity

de Beer, Irving January 2020 (has links)
>Magister Scientiae - MSc / Nanotechnology is spreading rapidly across the world as an extremely powerful technology. Nanoscience and nanotechnology are innovative scientific advancements that have been introduced only in this century. Nanotechnology has developed as the scientific advancement to grow and transform the entire agri-food area, with the potential to elevate global food production, in addition to the nutritional value, quality, and safety of food and food products. It has gained recognition due to its variability in shape, size, and dimension and how it correlates to its possibilities. One of those functions is nanoparticles’ (NPs) ability to have antimicrobial activity, more specifically its antifungal activity. One particular pathway of synthesising NPs is through phytonanotechnology which is the use of biomaterial to synthesis the NPs. / 2024
19

Dynamic Light Scattering (DLS) for the characterization of diffusion processes

Koller, T. M., Giraudet, C., Rausch, M. H., Fröba, A. P. 18 September 2018 (has links)
No description available.
20

Vliv podmínek přípravy na solubilizační vlastnosti a stabilitu komplexů biopolymer-tenzid / Influence of the preparing of a biopolymer-surfactant complex on its stability and solubilization properties.

Pilgrová, Tereza January 2012 (has links)
Influence of the preparing of a biopolymer-surfactant system on its solubilization properties and stability was investigated by using fluorescence spectroscopy and dynamic light scattering methods. Investigation was made on complex of native hyaluronan with cationic surfactant cetyltrimethylammonium bromide (CTAB). System has been studied in aqueous and in saline solutions. The effect of temperature of stock solutions and freezing effect on subsequent properties were investigated. Further was examinated, what effect has a way of introducing fluorescent probe into the system on subsequent solubilization properties. It was found that the conditions of preparing of biopolymer-surfactant system have a significant effect on the solubilization properies and stability of complex.

Page generated in 0.0826 seconds