• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 384
  • 82
  • 52
  • 44
  • 13
  • 12
  • 11
  • 9
  • 8
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • Tagged with
  • 716
  • 716
  • 151
  • 140
  • 120
  • 100
  • 89
  • 85
  • 83
  • 79
  • 76
  • 74
  • 68
  • 67
  • 62
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
341

Development of a real-time learning scheduler using adaptive critics concepts

Sahinoglu, Mehmet Murat January 1993 (has links)
No description available.
342

Multi-player pursuit-evasion differential games

Li, Dongxu 30 November 2006 (has links)
No description available.
343

Maximizing Gross Margin of a Pumped Storage Hydroelectric Facility Under Uncertainty in Price and Water Inflow

Ikudo, Akina 08 September 2009 (has links)
No description available.
344

Cloud Computing based Velocity Profile Generation for Minimum Fuel Consumption

Kumar, Sri Adarsh A. 19 June 2012 (has links)
No description available.
345

Application of Artificial Neural Networks in the Power Split Controller For a Series Hydraulic Hybrid Vehicle

Cheng, Chao 09 September 2010 (has links)
No description available.
346

An Investigation into the Optimal Control Methods in Over-actuated Vehicles : With focus on energy loss in electric vehicles

Bhat, Sriharsha January 2016 (has links)
As vehicles become electrified and more intelligent in terms of sensing, actuation and processing; a number of interesting possibilities arise in controlling vehicle dynamics and driving behavior. Over-actuation with inwheel motors, all wheel steering and active camber is one such possibility, and can facilitate control combinations that push boundaries in energy consumption and safety. Optimal control can be used to investigate the best combinations of control inputs to an over-actuated system. In Part 1, a literature study is performed on the state of art in the field of optimal control, highlighting the strengths and weaknesses of different methods and their applicability to a vehicular system. Out of these methods, Dynamic Programming and Model Predictive Control are of particular interest. Prior work in overactuation, as well as control for reducing tire energy dissipation is studied, and utilized to frame the dynamics, constraints and objective of an optimal control problem. In Part 2, an optimal control problem representing the lateral dynamics of an over-actuated vehicle is formulated, and solved for different objectives using Dynamic Programming. Simulations are performed for standard driving maneuvers, performance parameters are defined, and a system design study is conducted. Objectives include minimizing tire cornering resistance (saving energy) and maintaining the reference vehicle trajectory (ensuring safety), and optimal combinations of input steering and camber angles are derived as a performance benchmark. Following this, Model Predictive Control is used to design an online controller that follows the optimal vehicle state, and studies are performed to assess the suitability of MPC to over-actuation. Simulation models are also expanded to include non-linear tires. Finally, vehicle implementation is considered on the KTH Research Concept Vehicle (RCV) and four vehicle-implementable control cases are presented. To conclude, this thesis project uses methods in optimal control to find candidate solutions to improve vehicle performance thanks to over-actuation. Extensive vehicle tests are needed for a clear indication of the energy saving achievable, but simulations show promising performance improvements for vehicles overactuated with all-wheel steering and active camber.
347

Dynamic Travel Demand Management Strategies: Dynamic Congestion Pricing and Highway Space Inventory Control System

Edara, Praveen Kumar 21 September 2005 (has links)
The number of trips on highways and urban networks has significantly increased in the recent decades in many cities across the world. At the same time, the road network capacities have not kept up with this increase in travel demand. Urban road networks in many countries are severely congested, resulting in increased travel times, increased number of stops, unexpected delays, greater travel costs, inconvenience to drivers and passengers, increased air pollution and noise level, and increased number of traffic accidents. Expanding traffic network capacities by building more roads is extremely costly as well as environmentally damaging. More efficient usage of the existing supply is vital in order to sustain the growing travel demand. Travel Demand Management (TDM) techniques involving various strategies that increase the travel choices to the consumers have been proposed by the researchers, planners, and transportation professionals. TDM helps create a well balanced, less automobile dependent transportation system. In the past, several TDM strategies have been proposed and implemented in several cities around the world. All these TDM strategies, with very few exceptions, are static in nature. For example, in the case of congestion pricing, the toll schedules are previously set and are implemented on a daily basis. The amount of toll does not vary dynamically, with time of day and level of traffic on the highway (though the peak period tolls are different from the off-peak tolls, they are still static in the sense that the tolls don't vary continuously with time and level of traffic). The advent of Electronic Payment Systems (EPS), a branch of the Intelligent Transportation Systems (ITS), has made it possible for the planners and researchers to conceive of dynamic TDM strategies. Recently, few congestion pricing projects are beginning to adopt dynamic tolls that vary continuously with the time of day based on the level of traffic (e.g. I-15 value pricing in California). Dynamic TDM is a relatively new and unexplored topic and the future research attempts to provide answers to the following questions: 1) How to propose and model a Dynamic TDM strategy, 2) What are the advantages of Dynamic TDM strategies as compared to their Static counterparts, 3) What are the benefits and costs of implementing such strategies, 4) What are the travel impacts of implementing Dynamic TDM strategies, and 5) How equitable are the Dynamic TDM strategies as compared to their Static counterparts. This dissertation attempts to address question 1 in detail and deal with the remaining questions to the extent possible, as questions 2, 3, 4, and 5, can be best answered only after some real life implementation of the proposed Dynamic TDM strategies. Two novel Dynamic TDM strategies are proposed and modeled in this dissertation -- a) Dynamic Congestion Pricing and b) Dynamic Highway Space Inventory Control System. In the first part, dynamic congestion pricing, a real-time road pricing system in the case of a two-link parallel network is proposed and modeled. The system that is based on a combination of Dynamic Programming and Neural Networks makes "on-line" decisions about road toll values. In the first phase of the proposed model, the best road toll sequences during certain time period are calculated off-line for many different patterns of vehicle arrivals. These toll sequences are computed using Dynamic Programming approach. In the second phase, learning from vehicle arrival patterns and the corresponding optimal toll sequences, neural network is trained. The results obtained during on-line tests are close to the best solution obtained off-line assuming that the arrival pattern is known. Highway Space Inventory Control System (HSICS), a relatively new demand management concept, is proposed and modeled in the second half of this dissertation. The basic idea of HSICS is that all road users have to make reservations in advance to enter the highway. The system allows highway operators to make real-time decisions whether to accept or reject travellers' requests to use the highway system in order to achieve certain system-wide objectives. The proposed HSICS model consists of two modules -- Highway Allocation System (HAS) and the Highway Reservation System (HRS). The HAS is an off-line module and determines the maximum number of trips from each user class (categorized based on time of departure, vehicle type, vehicle occupancy, and trip distance) to be accepted by the system given a pre-defined demand. It develops the optimal highway allocations for different traffic scenarios. The "traffic scenarios-optimal allocations" data obtained in this way enables the development of HRS. The HRS module operates in the on-line mode to determine whether a request to make a trip between certain origin-destination pair in certain time interval is accepted or rejected. / Ph. D.
348

The Impact of Text Messages on Adoption and Knowledge of Integrated Pest Management Practices: A Randomized Control Trial Study of Potato Farmers in Carchi, Ecuador

Travis, Elli 22 September 2015 (has links)
Adoption of new agricultural technologies by farmers in developing countries is sometimes limited, despite the associated benefits. Potato farmers in Carchi, Ecuador rely heavily on pesticides to limit pest and disease damage, rather than adopting a more sustainable and economically viable alternative: Integrated Pest Management (IPM). One reason IPM adoption is limited is that farmers are uncertain about the benefits of the complex technology. Information provision builds knowledge that reduces that uncertainty and leads to adoption. Another reason for limited adoption is that other farming activities compete for time, and farmers may forget or delay IPM adoption. One way to transfer information and remind farmers to adopt IPM practices is through text messages. To evaluate the impact of text messages on IPM adoption, we conducted a Randomized Control Trial (RCT) among potato farmers in Carchi, Ecuador. The RCT allowed us to identify the causal impact of text messages by comparing adoption rates and knowledge scores between farmers who received text messages (treatment), and farmers who did not (control). After attending a one-day training, the treatment received tailored IPM messages for approximately five and a half months. At the conclusion of the trial period, treatment and control farmers reported their adoption of individual IPM practices, and were tested on their IPM knowledge. Treatment farmers adopted both simple and complex practices at higher rates than the control. Farmers who received text messages also possess more knowledge about IPM techniques than non-recipients, which is evidence of the knowledge-building effect of text messages. Furthermore, text messages were shown to be effective in encouraging the adoption of practices for which no separate inputs were required, and ineffective in encouraging practices where a separate input was required. Text messages are an positive supplement to an in-person training program because they build knowledge and remind farmers, both of which encourage the adoption of IPM, which benefits the farmer, his community, and the environment. / Master of Science
349

Unit commitment for operations

Sheblé, Gerald B. January 1985 (has links)
The topic of unit commitment has been and continues to be of interest to many researchers and is a primary operation for most utilities. Past research has utilized integer programming, dynamic programming, linear programming, gradient, and heuristic techniques. This research combines both linear programming and dynamic programming for unit commitment decisions within a weekly time frame. The result provides most of the advantages of linear programming and dynamic programming with less stringent requirements on the pre solution information needed for unit transition sequences. Further, the research yields a new tool for the solution of the Transaction Evaluation problem. / Ph. D. / incomplete_metadata
350

Resource Allocation Decision-Making in Sequential Adaptive Clinical Trials

Rojas Cordova, Alba Claudia 19 June 2017 (has links)
Adaptive clinical trials for new drugs or treatment options promise substantial benefits to both the pharmaceutical industry and the patients, but complicate resource allocation decisions. In this dissertation, we focus on sequential adaptive clinical trials with binary response, which allow for early termination of drug testing for benefit or futility at interim analysis points. The option to stop the trial early enables the trial sponsor to mitigate investment risks on ineffective drugs, and to shorten the development time line of effective drugs, hence reducing expenditures and expediting patient access to these new therapies. In this setting, decision makers need to determine a testing schedule, or the number of patients to recruit at each interim analysis point, and stopping criteria that inform their decision to continue or stop the trial, considering performance measures that include drug misclassification risk, time-to-market, and expected profit. In the first manuscript, we model current practices of sequential adaptive trials, so as to quantify the magnitude of drug misclassification risk. Towards this end, we build a simulation model to realistically represent the current decision-making process, including the utilization of the triangular test, a widely implemented sequential methodology. We find that current practices lead to a high risk of incorrectly terminating the development of an effective drug, thus, to unrecoverable expenses for the sponsor, and unfulfilled patient needs. In the second manuscript, we study the sequential resource allocation decision, in terms of a testing schedule and stopping criteria, so as to quantify the impact of interim analyses on the aforementioned performance measures. Towards this end, we build a stochastic dynamic programming model, integrated with a Bayesian learning framework for updating the drug’s estimated efficacy. The resource allocation decision is characterized by endogenous uncertainty, and a trade-off between the incentive to establish that the drug is effective early on (exploitation), due to a time-decreasing market revenue, and the benefit from collecting some information on the drug’s efficacy prior to committing a large budget (exploration). We derive important structural properties of an optimal resource allocation strategy and perform a numerical study based on realistic data, and show that sequential adaptive trials with interim analyses substantially outperform traditional trials. Finally, the third manuscript integrates the first two models, and studies the benefits of an optimal resource allocation decision over current practices. Our findings indicate that our optimal testing schedules outperform different types of fixed testing schedules under both perfect and imperfect information. / Ph. D. / Adaptive clinical trials for new drugs or treatment options have the potential to reduce pharmaceutical research and development costs, and to expedite patient access to new therapies. Sequential adaptive clinical trials allow investigators and trial sponsors to terminate drug testing “early,” at interim analysis points, either for benefit or futility reasons. In the first manuscript, we model current practices of sequential adaptive trials, so as to quantify the risk of terminating the development of an effective drug incorrectly. Towards this end, we build a simulation model to realistically represent the current decision-making process. In the second manuscript, we study the financial investment decisions made by the trial sponsor, such as pharmaceutical firms, so as to quantify the impact of interim analyses on a series of performance measures relevant to the firm and the patients. Towards this end, we build a a mathematical optimization model that incorporates elements representing the knowledge gained by decision makers on the drug’s efficacy, which is unknown to them at the beginning of the trial. As a result of our analysis, we obtain an optimal strategy to allocate financial resources in a sequential adaptive trial. In the third and final manuscript, we compare the performance of our optimal resource allocation strategy against the performance of the triangular test, a well-known and widely implemented sequential testing methodology, as measured by the aforementioned performance measures.

Page generated in 0.0786 seconds