• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 7
  • 7
  • 5
  • 4
  • 1
  • 1
  • Tagged with
  • 80
  • 80
  • 17
  • 13
  • 10
  • 10
  • 10
  • 10
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Vliv odporových cvičení na svalovou součinnost / The influence of resistance exercises on the muscular cooperation

Hanžlová, Eva January 2007 (has links)
A muscular co-operation change was observed at exercising intent on improvement of a scapula dynamic stability. In the study there were ten individuals participating in a specific resistance exercise for a period of seven to nine weeks. The cooperation of scapular muscles was evaluated in stand - by (tilt test) and investigation the stereotype of arm abduction, visually and by the help of a surface polyelectromyography. A distinct improvement of a scapula dynamic stability occurred at three observed objects. Powered by TCPDF (www.tcpdf.org)
52

Využití dynamického tlumiče v hydrodynamice / Use of the dynamic damper in hydrodynamics

Vrána, Jiří January 2019 (has links)
The master thesis deals with the possibility of using dynamic damper in hydrodynamics. Specifically, the assessment of the impact of dynamic damper on the dynamic stability of the fluid system when the system exhibited unstable behaviour prior to damper installation due to self-excited vibration. In the thesis is presented the algorithm for the calculation of pressure and flow pulsations based on the transfer matrix method, the transition matrices for different damper designs variants are derived. Using the algorithm, the effect of a damper placed in a stable and unstable fluid system is solved. The output of this work is software for solution of pressure and flow pulsations in the system with serially arranged hydrodynamic elements created in the MATLAB program.
53

Grey-box Modeling of Hydropower Plants for Improved Frequency Regulation : Evaluation of Double-Regulated Hydropower Turbines for Fulfillment of the New FCR-requirements

Engström, Karolina, Waldenfjord, Rebecca January 2023 (has links)
Over the last decades, the frequency on the Nordic electrical power grid has deteriorated. Therefore, new stricter requirements are developed for the hydropower delivering regulating active power on the Frequency Containment Reserve market (FCR). This thesis aims to investigate the possibility of modeling two double-regulated hydropower plants, referred to as Unit 1 and 2, to evaluate their compliance with the new FCR-requirements.  By modeling the hydropower plants, the first goal was to find a model structure that captures the essential dynamics of the systems. A second goal was to evaluate whether the two units currently fulfill the new FCR-requirements, and investigate how the turbine governors’ settings could be optimized to fulfill the new requirements. Data obtained from FCR-tests was used in MATLAB to evaluate the two stations’ dynamic stability and performance requirements. Through system identification in MATLAB, grey-box modeling was used to create linear and non-linear turbine and waterways models for Unit 1 and Unit 2. The non-linear turbine and waterways models were implemented in Simulink, together with corresponding turbine governors, to find optimal parameter settings to fulfill the FCR-requirements.  The evaluation of the new FCR-requirements shows that none of the two units fulfills the dynamic stability requirement. However, Unit 1 fulfills the performance requirement. The results imply that double-regulated turbines will most likely have difficulties fulfilling the new requirements, which will cause major consequences in improving the frequency regulation quality. The results from the grey-box modeling present that the linear models are not validated with the step response data, due to not capturing the system dynamics when compared with provided data from the units. On the other hand, the non-linear models are validated with step response data as the model captures the system dynamics more accurately. However, the non- linear Simulink models cannot capture the dynamics of the hydropower systems for sinusoidal signals with varying frequencies which are used in the new FCR-requirement test. Consequently, the thesis has no result of the optimal parameter setting of the turbine governors to fulfill the new FCR-requirements. In conclusion, the grey-box models, with the level of detail presented in this thesis, are inadequate in capturing the system’s dynamics to evaluate the new FCR-requirements. Thus, the thesis contributes to filling a knowledge gap within the area of modeling for frequency regulation.
54

The Dynamics of Viscoelastic Wormlike Micelles in Complex Flows

Moss, Geoffrey R 01 January 2009 (has links) (PDF)
Solutions of self-assembled wormlike micelles are used with ever increasing frequency in a multitude of consumer products ranging from cosmetic to industrial applications. Owing to the wide range of applications, flows of interest are often complex in nature; exhibiting both extensional and shear regions that can make modeling and prediction both challenging and valuable. Adding to the complexity, the micellar dynamics are continually changing, resulting in a number of interesting phenomena, such as shear banding and extensional flow instabilities. Presented in this thesis are the results of an investigation into the flow fields generated by both a controllable and idealized porous media, effected as a periodic array of cylinders as well as a single circular cylinder. In order to fully characterize the kinematics, two rheologically documented test fluids were used. The first test channel geometry consists of six equally spaced cylinders, arranged perpendicular to the flow, while the second consists of a single circular cylinder. By systematically varying the Deborah number, the flow kinematics, stability and pressure drop were measured. A combination of particle image velocimetry in conjunction with flush mount pressure transducers were used to characterize the flow, while flow induced birefringence measurements were used to determine micelle deformation and alignment. In the periodic geometry, the pressure drop was found to decrease initially due to the shear thinning of the test fluid, and then exhibit a dramatic upturn as other elastic effects begin to dominate in one of the test fluids. In the case of the single cylinder, no such upturn was observed. Presented is evidence of the onset of an elastic instability in one of the test fluids above a critical Deborah number, manifest in fluctuating transient pressure drop measurements and asymmetric streamlines. This instability was observed in both test geometries. It is argued that this instability can be attributed to the measurable differences in the extensional rheology of the two fluids.
55

Feasibility Study for Testing the Dynamic Stability of Blunt Bodies with a Magnetic Suspension System in a Supersonic Wind Tunnel

Sevier, Abigail 05 June 2017 (has links)
No description available.
56

[en] VIBRATION CONTROL OF SLENDER TOWERS WITH A PENDULUM ABSORBER / [pt] ABSORSOR PENDULAR PARA CONTROLE DE VIBRAÇÕES DE TORRES ESBELTAS

DIEGO ORLANDO 24 July 2006 (has links)
[pt] Nesse trabalho, estuda-se o desempenho de um absorsor pendular no controle de vibrações de torres altas e esbeltas, ocasionadas por carregamentos dinâmicos, tais como, por exemplo, cargas ambientais. Em virtude da possibilidade de oscilações de grande amplitude, considera- se na modelagem do problema a não-linearidade do pêndulo. O principal objetivo é estudar o comportamento do sistema torre-pêndulo, submetido a um carregamento harmônico, no regime não-linear, abordando-se aspectos gerais ligados à estabilidade dinâmica. Apresenta-se, inicialmente, a formulação necessária para obter o funcional de energia do sistema coluna-pêndulo, tanto para o caso linear quanto para o caso não-linear, do qual derivam-se as equações diferenciais parciais de movimento. A partir das equações lineares, obtêm-se as freqüências naturais e modos de vibração para alguns casos relevantes de coluna. A seguir, com base na análise modal do sistema coluna-pêndulo, deriva-se um modelo de dois graus de liberdade capaz de descrever com precisão o comportamento do sistema na vizinhança da freqüência fundamental da coluna, do qual obtêm-se as equações de movimento e as equações de estado não- lineares. Uma análise paramétrica detalhada das oscilações não-lineares do sistema coluna-pêndulo demonstra que o absorsor pendular passivo pode reduzir ou amplificar a resposta da coluna. No estudo da influência da não-linearidade geométrica do pêndulo, verifica-se a importância dessa na resposta do sistema, evidenciando que a nãolinearidade não pode ser desprezada nessa classe de problema. Por fim, com base nos resultados, propõe-se um absorsor pendular híbrido. Os estudos revelam que este controle é mais eficiente que o passivo e que não requer grande gasto de energia. / [en] In the present work the performance of a pendulum absorber in the vibration control of tall and slender towers, caused by dynamic loads, such as, environmental loads, is studied in detail. Due to the possibility of large amplitude oscillations, the non-linearity of the pendulum is considered in the modeling of the problem. The main objective of this research is to study the behavior of the tower-pendulum system, submitted to a harmonic load, in the nonlinear regimen, with emphasis on general aspects related to its dynamic stability. It is presented, initially, the formulation necessary for the derivation of the system´s energy functional, both for the linear and the nonlinear cases, from which the partial differential equations of motion are derived and the vibration frequencies and related vibration modes are obtained. Then, based on the modal analysis of the column-pendulum system, a two degrees of freedom model, capable of describing with precision the behavior of the system in the neighborhood of the fundamental frequency of the column is derived, from which the equations of motion and the nonlinear state-space equations are obtained. A detailed parametric analysis of the nonlinear oscillations of the system is carried out. It shows that the pendulum may reduce or amplify the response of the column. The results show a marked influence of the geometric not-linearity of the pendulum on the response of the system, showing that its not-linearity cannot be neglected in this class of problems. Finally, based on the results, a hybrid control approach is proposed. These studies show that this control strategy is more efficient than the passive control alone and that it does not require a large amount of energy.
57

[en] LOW DIMENSIONAL MODELS FOR NONLINEAR VIBRATION ANALYSIS AND STABILITY OF CYLINDRICAL SHELLS. / [pt] MODELOS DE DIMENSÃO REDUZIDA PARA ANÁLISE DAS OSCILAÇÕES NÃO-LINEARES E ESTABILIDADE DE CASCAS CILÍNDRICAS

FREDERICO MARTINS ALVES DA SILVA 27 May 2008 (has links)
[pt] Nesta tese, as vibrações não-lineares e a estabilidade de uma casca cilíndrica contendo um fluido são estudadas com base em modelos de dimensão reduzida, isto é, modelos com um número reduzido de graus de liberdade. A partir dos funcionais de energia potencial e cinética de uma casca cilíndrica, deduzem-se suas equações de movimento. O campo de deformações da casca cilíndrica segue a teoria não- linear de Donnell para cascas abatidas. O fluido é considerado interno à casca irrotacional, não-viscoso e incompressível, sendo descrito a partir de um potencial de velocidade que leva em consideração a interação entre o fluido e a estrutura. Para resolver o sistema de equações de equilíbrio da casca, desenvolve-se um procedimento analítico que permite obter os campos de deslocamento axial e circunferencial em função dos deslocamentos laterais, além de atender as condições de contorno do problema. Desta forma, reduz-se o sistema de equações de equilíbrio a uma única equação diferencial parcial que é resolvida com o método de Galerkin. A determinação dos deslocamentos laterais é feita a partir de técnicas de perturbação que ordena os modos não-lineares de acordo com sua importância na solução da casca cilíndrica. Comprova-se essa ordenação através do método de Karhunen-Loève que fornece, também, uma expansão ótima para os deslocamentos laterais. Além dessas técnicas, apresenta-se uma redução polinomial que relacionam as amplitudes dos modos não-lineares com a amplitude do modo linear, criando uma expansão modal com 1 GDL. Apresentam-se respostas no tempo, fronteiras de instabilidade e diagramas de bifurcação para uma casca cilíndrica submetida a dois tipos de carregamentos harmônicos, pressão lateral e carga axial. A seguir, são propostos alguns critérios para a análise da a integridade do sistema dinâmico tanto para um sistema com 1 GDL quanto para um sistema multidimensional através da evolução e erosão das bacias de atração. Por fim, estuda-se o comportamento de cascas cilíndricas parcialmente cheias, mostrando a influência da altura do fluido nas fronteiras de instabilidade e curvas de ressonância da casca cilíndrica. / [en] The nonlinear vibrations and stability of a fluid-filled cylindrical shell is investigated using reduced order models. First, the nonlinear equations of motion of the cylindrical shell are deduced based on the expressions for the potential and kinetic energy, which are obtained using Donnell shallow shell theory. The internal fluid is considered to be irrotational, non- viscous and incompressible. It is described by a velocity potential that takes into account the fluid-shell interaction. A procedure is proposed to obtain analytically the axial and circumferential displacements of the shell, satisfying the in-plane equations of motion and the associated boundary conditions. So, the problem is reduced to one partial differential equation of motion which is solved by the Galerkin method. The transversal displacement field is obtained by perturbation techniques. This enables one to identify the relevance of each term in the nonlinear expansion of the vibration modes. Then, the Karhunen-Loève method is employed to investigate de relative importance of each mode obtained by the perturbation analysis on the nonlinear response and to deduce optimal interpolation function to be used in the Galerkin procedure. A SDOF model is also obtained by relating the modal amplitudes of the nonlinear modes to the vibration amplitude of the linear mode. Time responses, instability boundaries and ifurcation diagrams are obtained for cylindrical shells subjected to harmonic lateral and axial loads. Different procedures for the analysis of the shell integrity are proposed based on the evolution and erosion of the basins of attraction in state-space. Finally, the influence of the fluid height on the stability boundaries and resonance curves is studied.
58

Contribution à la commande corps-complet des robots humanoïdes : du concept à l'implémentation temps-réel / Contribution to whole-body control of humanoid robots : From concept to real time implementation

Galdeano, David 13 November 2014 (has links)
Les robots humanoïdes sont en passe d'être commercialisés pour le public à grande échelle, mais pour réussir cet objectif il est nécessaire de rendre ces robots fiables, fonctionnels et sécurisés. Ceci implique de nombreuses améliorations par rapport à de l'état de l'art, pour permettre un produit fini. Un des domaines à améliorer est la commande corps-complet des robots humanoïdes. Les objectifs de cette thèse sont de proposer une architecture de commande permettant de générer des mouvements corps-complet bio-inspirés. L'idée principale étant de s'inspirer de la marche humaine afin de reproduire ces mouvements sur un robot humanoïde. La solution de commande proposée utilise le principe de tâches pour quatre objectifs cinématiques: (i) la pose relative des pieds, (ii) la position du CoM, (iii) l'orientation du buste, et (iv) l'évitement des butées articulaires. La stabilité est renforcée en modifiant la position du CoM désirée à l'aide d'un stabilisateur basé sur la régulation non linéaire du ZMP. L'approche résultante est appelée architecture de commande hybride cinématique/dynamique. Cette approche a été validée expérimentalement sur deux prototypes de robots humanoïdes pour différentes tâches telles que le squat et la marche. / Humanoid robots are a rising trend, and are about to be sold to the public on a large scale, but for this to be possible it is necessary to make them reliable, secure and functional. This implies many improvements over the prior state of the art. A domain of improvement is the full-body control of humanoid robots. The objective of this thesis is to propose a control architecture for generating a bio-inspired full-body control. The main idea is to learn from human walking to replicate these movements on a humanoid robot. The proposed control solution uses the principle of kinematics task for four objectives: (i) the relative pose of the feet, (ii) the position of the Centre de masse (CoM), (iii) the orientation of the upper-body, and (iv) the joints' limits avoidance. Stability is enhanced by modifiying the CoM position by using a stabilizer based on nonlinear regulation of the Zero Moment Point (ZMP). The resulting approach is called hybrid kinematic / dynamic control architecture. This approach has been validated experimentally on two prototypes of humanoid robots for tasks such as squat and walking.
59

Assessment Of The Effect Of Hydroelectric Power Plants&#039 / Governor Settings On Low Frequency Inter Area Oscillations

Gencoglu, Cihangir 01 July 2010 (has links) (PDF)
The Turkish TSO (TEIAS) has been leading a project that aims the synchronous interconnected operation of the Turkish Power System and the ENTSO-E CESA (former UCTE) System. For this purpose, this study concentrates on the specific problems related to the electromechanical systems of large size hydroelectric power plants regarding low frequency inter area oscillations, which are prone to occur once the interconnected operation is established. The expected frequency of inter area oscillations after interconnected operation is close to 0.15 Hz, which is in the frequency range of the speed governing structures of turbines, as explained in the first two sections of the thesis. In the third section, the nonlinear turbine governor model used throughout the study is explained. In the following part, the governor parameter tuning study with regard to the defined performance objectives is explained. Afterwards, the effect of the retuned governor settings of the sample hydroelectric power plants on a simple multi machine power system is shown. Following that, the system wide effect of removing the sources of negative damping, which are strongly dependent on the governor settings of the major hydroelectric power plants of the Turkish Power System, is shown. In the final part, conclusions are made on the operation of the hydroelectric power plants regarding the frequency stability of the system after synchronous interconnected operation of the Turkish Power System and the ENTSO-E CESA System.
60

Fractional Stochastic Dynamics in Structural Stability Analysis

Deng, Jian January 2013 (has links)
The objective of this thesis is to develop a novel methodology of fractional stochastic dynamics to study stochastic stability of viscoelastic systems under stochastic loadings. Numerous structures in civil engineering are driven by dynamic forces, such as seismic and wind loads, which can be described satisfactorily only by using probabilistic models, such as white noise processes, real noise processes, or bounded noise processes. Viscoelastic materials exhibit time-dependent stress relaxation and creep; it has been shown that fractional calculus provide a unique and powerful mathematical tool to model such a hereditary property. Investigation of stochastic stability of viscoelastic systems with fractional calculus frequently leads to a parametrized family of fractional stochastic differential equations of motion. Parametric excitation may cause parametric resonance or instability, which is more dangerous than ordinary resonance as it is characterized by exponential growth of the response amplitudes even in the presence of damping. The Lyapunov exponents and moment Lyapunov exponents provide not only the information about stability or instability of stochastic systems, but also how rapidly the response grows or diminishes with time. Lyapunov exponents characterizes sample stability or instability. However, this sample stability cannot assure the moment stability. Hence, to obtain a complete picture of the dynamic stability, it is important to study both the top Lyapunov exponent and the moment Lyapunov exponent. Unfortunately, it is very difficult to obtain the accurate values of theses two exponents. One has to resort to numerical and approximate approaches. The main contributions of this thesis are: (1) A new numerical simulation method is proposed to determine moment Lyapunov exponents of fractional stochastic systems, in which three steps are involved: discretization of fractional derivatives, numerical solution of the fractional equation, and an algorithm for calculating Lyapunov exponents from small data sets. (2) Higher-order stochastic averaging method is developed and applied to investigate stochastic stability of fractional viscoelastic single-degree-of-freedom structures under white noise, real noise, or bounded noise excitation. (3) For two-degree-of-freedom coupled non-gyroscopic and gyroscopic viscoelastic systems under random excitation, the Stratonovich equations of motion are set up, and then decoupled into four-dimensional Ito stochastic differential equations, by making use of the method of stochastic averaging for the non-viscoelastic terms and the method of Larionov for viscoelastic terms. An elegant scheme for formulating the eigenvalue problems is presented by using Khasminskii and Wedig’s mathematical transformations from the decoupled Ito equations. Moment Lyapunov exponents are approximately determined by solving the eigenvalue problems through Fourier series expansion. Stability boundaries, critical excitations, and stability index are obtained. The effects of various parameters on the stochastic stability of the system are discussed. Parametric resonances are studied in detail. Approximate analytical results are confirmed by numerical simulations.

Page generated in 0.0458 seconds