Spelling suggestions: "subject:"dynamical lemsystems"" "subject:"dynamical atemsystems""
361 |
A generalized approach to the control of the evolution of a molecular system /Tang, Hui. January 1997 (has links)
Thesis (Ph. D.)--University of Chicago, Dept. of Physics, December 1997. / Includes bibliographical references. Also available on the Internet.
|
362 |
A study of the nonlinear dynamics nature of ECG signals using Chaos theoryTang, Man, January 2005 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2006. / Title proper from title frame. Also available in printed format.
|
363 |
Teorema ergódico multiplicativo de oseledetsAlves, Fabricio Fernando [UNESP] 18 February 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:55Z (GMT). No. of bitstreams: 0
Previous issue date: 2010-02-18Bitstream added on 2014-06-13T20:16:03Z : No. of bitstreams: 1
alves_ff_me_sjrp.pdf: 362207 bytes, checksum: 9a797ca400dea6e139af98c5a9f10378 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Este trablaho apresenta os conceitos de Lyapounov e de espaços próprios e fornece um resultado devido a Oseledets, o qual trata da existência desses expoentes (e, consequentemente, dos espaços próprios) do ponto de vista da teoria da medida. A prova do teorema que nós fornecemos foi dada originalmente por Mañe e posteriormente melhorada por Viana. / This work presents the concepts of Lyapounov exponents and of proper spaces and provides a result due to Oseledets, wich deals with the existence of these exponents (and consequently, of the proper spaces) from a measure-theoretical point of view. The proof of the theorem which we provide was originally given by Mañe later improved by Viana.
|
364 |
Propriedades topológicas e aritméticas dos fractais de RauzyPavani, Gustavo Antonio [UNESP] 18 February 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:55Z (GMT). No. of bitstreams: 0
Previous issue date: 2010-02-18Bitstream added on 2014-06-13T20:16:04Z : No. of bitstreams: 1
pavani_ga_me_sjrp.pdf: 401034 bytes, checksum: b8453144d792a7550e9f766d6bfc9fd8 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O objetivo deste trabalho é estudar propriedades topológicas e aritméticas dos fractais de Rauzy. Em particular provamos que o fractal de Rauzy é um subconjunto compacto de C, conexo, com interior simplesmente conexo e que ele induz um azulejamento periódico do plano complexo. Além disso, construimos um autômato finito capaz de gerar a fronteira do fractal de Rauzy. Com isto demos uma parametrização para a fronteira e claculamos sus dimensão de Hausdorff. Estudamos também os pontos extremos do fractal de Rauzy. / The aim of this work is to study some topological and arithmetical properties of the Rauzy fractals. In particular we proved that the Rauzy fractal is a compact subset of C, connected, its interior is simply connected, and it induces a periodic tiling of the complex pane. Furthermore, we studied the construction of a finite automaton able to generate the boundary of the Rauzy fractal, allowing us to provide a parametrization for its boundary, and claculate its Hausdorff dimension. We also studied the extremal points of the Rauzy fractal.
|
365 |
Sistemas dinâmicos finitos: Paciência Búlgara (Shift em partições e composições cíclicas)Tambellini, Leonardo [UNESP] 26 June 2013 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:56Z (GMT). No. of bitstreams: 0
Previous issue date: 2013-06-26Bitstream added on 2014-06-13T20:08:05Z : No. of bitstreams: 1
tambellini_l_me_sjrp.pdf: 1124234 bytes, checksum: 8cc4df0d667724def74ec4f0b65c3020 (MD5) / Neste trabalho abordamos um tema introdutório na interseção de duas áreas da Matemáticas, Sistemas Dinâmicos e Teoria dos Números. Através de um jogo aparentemente ingênuo, a Paciência Búlgara, estudamos dinâmicas em conjuntos finitos. Devidoà finitude do domínio, todos os pontos do sistema convergem para uma órbita periódica, mas interessante é saber quantas órbitas distintas o sistema apresenta em função da quantidade de elementos do domínio. Outra pergunta natural é sobre o tempo de convergência a estas órbitas. Estudamos também uma variação deste jogo, a Paciência Carolina / This work refers to a introductory topic in the intersection of two areas in Mathematics, Dynam-ical Systems and Number Theory. Motivated to a game seemingly naive, Bulgarian Solitaire, we study dynamics in finite sets. Due to the finiteness of the domain,all points of the sys-tem converge to a periodic orbit, but it is interesting to know how many distinct orbits the system displays depending on the size of the domain. Another natural question is about the convergence time of these orbits. We also study a variation of this game, Carolina Solitaire
|
366 |
Sobre o caos de DevaneyPereira, Weber Flávio [UNESP] 11 December 2001 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:56Z (GMT). No. of bitstreams: 0
Previous issue date: 2001-12-11Bitstream added on 2014-06-13T20:47:37Z : No. of bitstreams: 1
pereira_wf_me_sjrp.pdf: 614166 bytes, checksum: 6df9d771c65c6fa8d098e4e0aba88fb5 (MD5) / Neste trabalho estudamos os sistemas dinâmicos caóticos através da definição apresentada por Devaney, composta basicamente de três condições. Investigamos todas as implicações possíveis entre essas condições. Por fim, analisamos o estudo apresentando uma definição mais sucinta e provamos a sua equivalência com a apresentada por Devaney. / In this work we study the chaotic dynamic systems through the definition presented by Devaney, basically composed of three conditions. We investigate all the possible implications among these conditions. Finally, we finish the study presenting briefer definition and prove its equivalence to the one presented by Devaney.
|
367 |
A dinâmica não-linear de sistemas contínuos e discretosXavier, João Carlos 27 February 2009 (has links)
Made available in DSpace on 2016-12-12T20:15:53Z (GMT). No. of bitstreams: 1
resumo.pdf: 30947 bytes, checksum: f3ad8c83ce0b37705512036923795354 (MD5)
Previous issue date: 2009-02-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this work we investigate the dynamical behavior of two dynamical systems: (i) a symmetric linear coupling of three quadratic maps, and (ii) the generalized Lorenz equations obtained by Stenflo. For the discrete-time system represented by the coupling of three quadratic maps, we study the emergence of quasiperiodic states arising from Naimark-Sacker bifurcations of stable periodic orbits pertaining to 1×2n cascade, in particular period-1 and period-2 orbits. We also study the change in the structure of the basin of attraction of the chaotic attractors, in the neighborhood of chaos-hyperchaos transition. For the continuous-time system represented by the Lorenz-Stenflo equations, we analytically investigate, by using Routh-Hurwitz Test, the stability of three fixed points, although without explicit solution of the eigenvalue equation. We determine the precise location where pitchfork and Hopf bifurcations of the fixed points occur, as a function of the parameters of the system. Lyapunov exponents, parameter-space and phase-space portraits, and bifurcation diagrams were used to numerically characterize periodic and chaotic attractors in both systems. / Neste trabalho investigamos o comportamento de dois sistemas dinâmicos (i) Um acoplamento linear simetrico de três mapas quadraticos, e (ii) as equações eneralizadas de Lorenz, obtidas por Stenfio Para o sistema discreto, representado elo acoplamento linear dos três mapas quadraticos, estudamos a emergência de tados quase-periodicos, surgindo da bifurcação de Naimark-Sacker, a partir de uma bita estavel pertencendo a cascata 1 x 2n em particular orbitas de periodo um e eriodo dois Tambem estudamos a mudança na estrutura das bacias de atração do rator caotico, na vizinhança da transição caos-hipercaos Para o sistema de tempo ntínuo representado pelas equações de Lorenz-Stenflo, investigamos analiticamente elo método de Routh-Hurwitz, a estabilidade dos três pontos de equilíbrio, mas sem solução explicita da equação de autovalores. Determinamos a localização precisa de as bifurcações do tipo forquilha e Hopf acontecem, a partir dos pontos de uilíbrio, como uma função dos parâmetros do sistema. Expoentes de Lyapunov, agramas no espaço de parâmetros e espaço de fase e diagramas de bifurcação foram ilizados para caracterizar numericamente os atratores periódicos e caóticos em ibos os sistemas
|
368 |
Leis de escala associadas à quebra de simetria da distribuição de energia em um conjunto de sistemas dinâmicos : aplicações em mapeamentos discretos /Silva, Matheus Palmero. January 2017 (has links)
Orientador: Edson Denis Leonel / Coorientador: Peter Vaughan Elsmere McClintock / Banca: Roberto E. Lagos Monaco / Banca: Roberto Venegeroles Nascimento / Resumo: Nesta dissertação, investigamos propriedades estatísticas de alguns sistemas dinâmicos descritos por mapeamentos discretos nas proximidades de duas transições: (i) integrabilidade para não integrabilidade e; (ii) crescimento limitado de energia para crescimento ilimitado de energia (aceleração de Fermi). O foco principal está na descrição do comportamento da distribuição de probabilidade da velocidade/energia das partículas em dinâmica caótica. A quebra de simetria da distribuição de probabilidade leva a uma escala adicional àquelas já conhecidas na literatura e, com este estudo, acreditamos que a quebra de simetria também possa explicar um fenômeno que já vem sendo observado em mapeamentos discretos. Fenômeno este, até então descrito apenas fenomenologicamente, teve sua primeira observação na publicação seminal de investigação de leis de escala em mapeamentos discretos no periódico Phys. Rev. Let. 93, 014101 (2004), de Edson D. Leonel, Peter V. E. McClintock e Jafferson K. L. Silva. Nossa contribuição para o problema está no desenvolvimento de descrições analíticas e verificações numéricas, baseadas em um estudo sistemático do comportamento difusivo das trajetórias caóticas no espaço de fases dos sistemas dinâmicos de interesse / Abstract: In this dissertation, we investigate statistical properties of some dynamical systems described by discrete mappings near two types of transitions: (i) integrability to non-integrability; (ii) limited to unlimited diffusion in energy (Fermi acceleration). The main goal is to describe the behaviour of the probability density of the velocity/energy for a set of particles moving in a chaotic dynamics. The break of symmetry in the probability distribution leads to an additional scaling to those are already known in the literature and, with this study, we believe that the symmetry break might also explain a well-known phenomenon observed for discrete mappings. This phenomenon, it has been reported so far phenomenologically. A first observation in an area-preserving mapping was in a letter published in Phys. Rev. Let. 93, 014101 (2004), authored by Edson D. Leonel, Peter V. E. McClintock and Jafferson K. L. Silva. Our contribution to the problem is on the development of an analytical approach and numerical verifications, based essentially on a systematic study of the diffusive behaviour of chaotic trajectories on the phase space of dynamical systems of interest / Mestre
|
369 |
C*-Correspondences and Topological Dynamical Systems Associated to Generalizations of Directed GraphsJanuary 2011 (has links)
abstract: In this thesis, I investigate the C*-algebras and related constructions that arise from combinatorial structures such as directed graphs and their generalizations. I give a complete characterization of the C*-correspondences associated to directed graphs as well as results about obstructions to a similar characterization of these objects for generalizations of directed graphs. Viewing the higher-dimensional analogues of directed graphs through the lens of product systems, I give a rigorous proof that topological k-graphs are essentially product systems over N^k of topological graphs. I introduce a "compactly aligned" condition for such product systems of graphs and show that this coincides with the similarly-named conditions for topological k-graphs and for the associated product systems over N^k of C*-correspondences. Finally I consider the constructions arising from topological dynamical systems consisting of a locally compact Hausdorff space and k commuting local homeomorphisms. I show that in this case, the associated topological k-graph correspondence is isomorphic to the product system over N^k of C*-correspondences arising from a related Exel-Larsen system. Moreover, I show that the topological k-graph C*-algebra has a crossed product structure in the sense of Larsen. / Dissertation/Thesis / Ph.D. Mathematics 2011
|
370 |
Chaos Computing: From Theory to ApplicationJanuary 2011 (has links)
abstract: In this thesis I introduce a new direction to computing using nonlinear chaotic dynamics. The main idea is rich dynamics of a chaotic system enables us to (1) build better computers that have a flexible instruction set, and (2) carry out computation that conventional computers are not good at it. Here I start from the theory, explaining how one can build a computing logic block using a chaotic system, and then I introduce a new theoretical analysis for chaos computing. Specifically, I demonstrate how unstable periodic orbits and a model based on them explains and predicts how and how well a chaotic system can do computation. Furthermore, since unstable periodic orbits and their stability measures in terms of eigenvalues are extractable from experimental times series, I develop a time series technique for modeling and predicting chaos computing from a given time series of a chaotic system. After building a theoretical framework for chaos computing I proceed to architecture of these chaos-computing blocks to build a sophisticated computing system out of them. I describe how one can arrange and organize these chaos-based blocks to build a computer. I propose a brand new computer architecture using chaos computing, which shifts the limits of conventional computers by introducing flexible instruction set. Our new chaos based computer has a flexible instruction set, meaning that the user can load its desired instruction set to the computer to reconfigure the computer to be an implementation for the desired instruction set. Apart from direct application of chaos theory in generic computation, the application of chaos theory to speech processing is explained and a novel application for chaos theory in speech coding and synthesizing is introduced. More specifically it is demonstrated how a chaotic system can model the natural turbulent flow of the air in the human speech production system and how chaotic orbits can be used to excite a vocal tract model. Also as another approach to build computing system based on nonlinear system, the idea of Logical Stochastic Resonance is studied and adapted to an autoregulatory gene network in the bacteriophage λ. / Dissertation/Thesis / Ph.D. Electrical Engineering 2011
|
Page generated in 0.0493 seconds