• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Density-Functional Theory+Dynamical Mean-Field Theory Study of the Magnetic Properties of Transition-Metal Nanostructures

Kabir, Alamgir 01 January 2015 (has links)
In this thesis, Density Functional Theory (DFT) and Dynamical Mean-Field Theory (DMFT) approaches are applied to study the magnetic properties of transition metal nanosystems of different sizes and compositions. In particular, in order to take into account dynamical electron correlation effects (time-resolved local charge interactions), we have adopted the DFT+DMFT formalism and made it suitable for application to nanostructures. Preliminary application of this DFT+DMFT approach, using available codes, to study the magnetic properties of small (2 to 5-atom) Fe and FePt clusters provide meaningful results: dynamical effects lead to a reduction of the cluster magnetic moment as compared to that obtained from DFT or DFT+U (U being the Coulomb repulsion parameter). We have subsequently developed our own nanoDFT+DMFT code and applied it to examine the magnetization of iron particles containing10-147 atoms. Our results for the cluster magnetic moments are in a good agreement with experimental data. In particular, we are able to reproduce the oscillations in magnetic moment with size as observed in the experiments. Also, DFT+DMFT does not lead to an overestimation of magnetization for the clusters in the size range of 10-27 atoms found with DFT and DFT+U. On application of the nanoDFT+DMFT approach to systems with mixed geometry – Fe2O3 film, which are periodic (infinitely extended), in two directions, and finite in the third. Similar to DFT+U, we find that the surface atom magnetic moments are smaller compared to the bulk. However, the absolute values of the surface atoms magnetic moments are smaller in DFT+DMFT. In parallel, we have carried out a systematic study of magnetic anisotropy in bimetallic L10 FePt nanoparticles (20-484 atoms) by using two DFT-based approaches: direct and the torque method. We find that the magnetocrystalline anisotropy (MCA) of FePt clusters is larger than that of the pure Fe and Pt ones. We explain this effect by a large hybridization of 3d Fe- and 5d Pt-atom orbitals, which lead to enhancement of the magnetic moment of the Pt atom, and hence to a larger magnetic anisotropy because of large spin-orbit coupling of Pt atoms. In addition, we find that particles whose (large) central layer consists of Pt atoms, rather than Fe, have larger MCA due to stronger hybridization effects. Such 'protected' MCA, which does not require protective cladding, can be used in modern magnetic technologies.
2

Estudos do modelo de Hubbard desordenado em duas dimensões / Studies of the two-dimensional disordered Hubbard model

Suárez Villagrán, Martha Yolima, 1984- 23 August 2018 (has links)
Orientador: Eduardo Miranda / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-23T18:51:04Z (GMT). No. of bitstreams: 1 SuarezVillagran_MarthaYolima_D.pdf: 7321255 bytes, checksum: d76479a0e0c1143207cb4ee380a8034d (MD5) Previous issue date: 2013 / Resumo: Estudamos nesta tese alguns aspectos da transição metal-isolante de Mott no caso desordenado. O modelo no qual baseamos nosso estudo é o modelo de Hubbard desordenado, que é o modelo mais simples a apresentar a transição metal-isolante de Mott. Analisamos esse modelo através da Teoria Dinâmica de Campo Médio Estatística (StatDMFT). Essa teoria é uma extensão natural da Teoria Dinâmica de Campo Médio (DMFT), que foi usada com relativo sucesso nos últimos anos para analisar a transição de Mott no caso limpo. Como no caso dessa última, a StatDMFT incorpora os efeitos de correlação eletrônica apenas nos seus aspetos locais. A desordem é tratada de maneira a incorporar todos os efeitos de localização de Anderson. Com essa técnica, analisamos a transição de Mott desordenada no caso bi-dimensional, usando o Monte Carlo quântico para resolver os problemas de impureza única de Anderson requeridos pela StatDMFT. Encontramos as linhas espinodais nas quais o metal e o isolante deixam de ser meta-estáveis. Também estudamos os padrões espaciais das flutuações de quantidades locais, como a auto-energia e a função de Green local, e mostramos como há o aparecimento de regiões metálicas dentro do isolante e viceversa. Analisamos efeitos de tamanho finito e mostramos que, em consonância com os teoremas de Imry e Ma, a transição de primeira ordem desaparece no limite termodinâmico. Analisamos as propriedades de transporte desse sistema através de um mapeamento a um sistema de resistores aleatórios clássicos e calculamos a corrente média e sua distribuição através da transição metal-isolante. Finalmente, estudamos o comportamento da parede de domínio que se forma entre o isolante e o metal no caso limpo. Isso foi feito através de um modelo de uma cadeia unidimensional conectada a reservatórios, um metálico e um isolante, cada um em uma de suas extremidades. Nesse caso, utilizamos o método da Teoria de Perturbação Iterada para a solução dos modelos de impureza única. Encontramos o comportamento da parede como função da temperatura e das interações / Abstract: In this thesis, we studied some aspects of the Mott metal-insulator transition in the disordered case. The model on which we based our analysis is the disordered Hubbard model, which is the simplest model capable of capturing the Mott metal-insulator transition. We investigated this model through the Statistical Dynamical Mean-Field Theory (statDMFT). This theory is a natural extension of the Dynamical Mean-Field Theory (DMFT), which has been used with relative success in the last several years with the purpose of describing the Mott transition in the clean case. As is the case for the latter theory, the statDMFT incorporates the electronic correlation effects only incorporate Anderson localization effects.. With this technique, we analyzed the disordered two-dimensional Mott transition, using Quantum Monte Carlo to solve the associated single-impurity problems. We found the spinodal lines at which metal and insulator cease to be meta-stable. We also studied the spatial fluctuations of local quantities, such as the self-energy and the local Green¿s function, and showed the appearance of metallic regions within the insulator and vice-versa. We carried out an analysis of finite-size effects and showed that, in agreement with the theorems of Imry and Ma, the first-order transition is smeared in the thermodynamic limit. We analyzed transport properties by means of a mapping to a random classical resistor network and calculated both the average current and its distribution across the metalinsulator transition. Finally, we studied the behavior of the domain wall which forms between the metal and the insulator in the clean case. This was done by means of a model of a one-dimensional chain connected to two reservoirs, one metallic and the other insulating, each attached to one of the chain¿s ends. In this case, we used the Iterated Perturbation Theory technique in order to solve the associated singleimpurity problems. We then established the behavior of the domain wall width as a function of temperature and interactions / Doutorado / Física / Doutora em Ciências
3

Theoretical methods for the electronic structure and magnetism of strongly correlated materials

Locht, Inka L. M. January 2017 (has links)
In this work we study the interesting physics of the rare earths, and the microscopic state after ultrafast magnetization dynamics in iron. Moreover, this work covers the development, examination and application of several methods used in solid state physics. The first and the last part are related to strongly correlated electrons. The second part is related to the field of ultrafast magnetization dynamics. In the first part we apply density functional theory plus dynamical mean field theory within the Hubbard I approximation to describe the interesting physics of the rare-earth metals. These elements are characterized by the localized nature of the 4f electrons and the itinerant character of the other valence electrons. We calculate a wide range of properties of the rare-earth metals and find a good correspondence with experimental data. We argue that this theory can be the basis of future investigations addressing rare-earth based materials in general. In the second part of this thesis we develop a model, based on statistical arguments, to predict the microscopic state after ultrafast magnetization dynamics in iron. We predict that the microscopic state after ultrafast demagnetization is qualitatively different from the state after ultrafast increase of magnetization. This prediction is supported by previously published spectra obtained in magneto-optical experiments. Our model makes it possible to compare the measured data to results that are calculated from microscopic properties. We also investigate the relation between the magnetic asymmetry and the magnetization. In the last part of this work we examine several methods of analytic continuation that are used in many-body physics to obtain physical quantities on real energies from either imaginary time or Matsubara frequency data. In particular, we improve the Padé approximant method of analytic continuation. We compare the reliability and performance of this and other methods for both one and two-particle Green's functions. We also investigate the advantages of implementing a method of analytic continuation based on stochastic sampling on a graphics processing unit (GPU).

Page generated in 0.0877 seconds