• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 304
  • 142
  • 25
  • 3
  • 1
  • Tagged with
  • 470
  • 470
  • 284
  • 252
  • 91
  • 82
  • 75
  • 48
  • 46
  • 45
  • 44
  • 44
  • 41
  • 38
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Stratégies de contrôle laser de la dynamique moléculaire

Lefebvre, Catherine 13 April 2018 (has links)
Cette thèse étudie de façon phénoménologique la dynamique moléculaire en champ laser intense et plus précisément la mise en place des mécanismes de base pour stabiliser une molécule face à la dissociation. La ligne directrice dans ces travaux repose sur la dynamique des résonances Floquet en champ laser intense. Les stratégies simples et génériques proposées sont appliquées sur le modèle unidimensionnel de H₂⁺ pour lequel des calculs de paquets d'ondes dépendants du temps ont été effectués. En partant du mécanisme de synchronisation entre les mouvements du paquet d'ondes et celles des courbes d'énergie potentielle, à l'origine établi dans le domaine spectral de l'infrarouge où l'image quasi-statique prévaut, nous proposons un scénario pour étendre son champ d'application dans le domaine spectral de l'ultraviolet-visible où c'est plutôt l'image multiphotonique qui devient justifiée. Dans la représentation Floquet, on observe alors la respiration des courbes d'énergie potentielle habillées au croisement à un photon suivant non pas les oscillations de l'onde porteuse, mais celles de l'enveloppe dont la fréquence de répétition se trouve dans l'infrarouge. Nous nous intéressons particulièrement à la dépendance de la dynamique moléculaire sur la phase de l'enveloppe et nous faisons appel à une reformulation récente de la théorie de Floquet pour cerner l'origine du rôle dynamique de la phase absolue. Par une optimisation simple des paramètres optiques, nous prenons avantage sur les différent s mécanismes de base dans les images multiphotonique et quasi-statique pour stabiliser la molécule face à la dissociation par un transfer tadiabatique d'un état vibrationnel initial sur un état métastable, un état de résonance. De façon encore plus efficace, ce transfert adiabatique est ensuite effectué sur une résonance à largeur nulle. Tous ces processus multiphotoniques sont par la suite appliqués dans le problème d'ionisation dissociative de H₂ pour lequel on étudie la dynamique de l'ion moléculaire H₂⁺ sous une impulsion laser femtoseconde dans le proche infrarouge, préalablement préparé à partir de la molécule mère par une impulsion attoseconde ultaviolette extrême. L'étude du caractère adiabatique ou non-adiabatique de la préparation de l'ion et de son évolution subséquente sous l'impulsion infrarouge permet de retracer à la fois une signature de la dynamique parmi les résonances Floquet et une image indirecte du paquet d'ondes vibrationnel initial. Ce type d'imagerie de la dynamique moléculaire apporte un support théorique d'interprétation à des résultats expérimentaux portant sur les spectres d'énergie cinétique des photofragments. Puis, avec l'aide de la même reformulation de la théorie de Floquet, nous démontrons l'existence d'une interférométrie de paquets d'ondes, qui sont préparés successivement par chacune des impulsions attosecondes d'un train. Ce nouveau schéma impulsion pompe attoseconde ultraviolette extrême combinée à une impulsion sonde femtoseconde infrarouge offre en principe une stratégie pour la caractérisation des trains d 'impulsions attosecondes.
102

Prédiction des propriétés des matériaux énergétiques en vue de leur détection

Robitaille, Pierre-Olivier 24 April 2018 (has links)
La lutte aux explosifs improvisés (IEDs) est l’un des plus grands défis auxquels les armées modernes doivent faire face. Il existe un vaste éventail de méthodes permettant de détecter et de neutraliser les IEDs, incluant des méthodes plus classiques comme la résonnance magnétique nucléaire, la spectroscopie infrarouge et la diffraction des rayons X, ainsi que des approches moins orthodoxes, comme des chiens renifleurs. Une des techniques les plus prometteuses combine l’utilisation de l’induction électromagnétique, une approche permettant la détection de métaux dans le sol, et le radar à pénétration de sol qui mesure la constante diélectrique des différentes composantes du sol[6]. La détermination de la constante diélectrique d’une variété d’explosifs revêt donc un intérêt particulier pour la lutte contre les IEDs. Ce projet vise à développer une méthode efficace pour calculer de manière théorique les constantes diélectriques d’une variété de matériaux énergétiques en utilisant la théorie de la fonctionnelle de la densité (DFT). Un autre aspect du projet vise à prédire les changements dans la maille cristalline des explosifs en fonction de variation de température et de pression et de comparer les valeurs obtenues avec les valeurs expérimentales. Pour ce faire, la technique de dynamique moléculaire a été utilisée. Cela permet de tenir compte de la dépendance de la constante diélectrique envers la densité du matériau, qui elle varie avec un changement de température ou de pression. / The fight against Improvised Explosive Devices (IEDs) is one of the greatest challenges facing modern armies. A wide range of methods have been developed over the last years in order to detect and neutralize IEDs, from classic detection methods, nuclear magnetic resonance (NMR), infrared spectroscopy (IR) and X-ray diffraction, to less orthodox methods using the impressive olfactory capacity of dogs, or even rats. One of the most promising techniques combines the use of electromagnetic induction, a technique used to detect the presence of metals in the soil, and Ground Penetrating Radars (GPR), which measure the dielectric constant of constituents present in the ground. Determination of the dielectric constant of various energetic materials (EMs) is therefore of interest in the fight against IEDs. This project aims at developing an effective method to predict dielectric constants of various EMs by theroretical calculations, using the Density Functional Theory (DFT) and establishing a correlation to their crystalline structure. Another aspect of this research focuses on predicting changes in crystal lattice parameters with temperature and pressure using Molecular Dynamics (MD), and comparing the predictions to values experimentally determined.
103

Dynamique des électrons corrélés en champ laser intense

Peters, Michel 18 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2012-2013. / L'avancement technologique des sources de rayonnement laser est tel qu'il permet désormais l'observation résolue en temps des phénomènes se déroulant dans les atomes et les molécules sous l'effet de champs intenses et de très courte durée [1, 2]. La complexité croissante de ces expériences et des processus auxquels elles s'intéressent suscite plusieurs questions à propos de la dynamique multiélectronique de ces systèmes. Par exemple, dans un travail récent portant sur la molécule de CO₂ [3], une technique d'imagerie moléculaire exploitant les interférences dans le signal d'émission des harmoniques élevées a été proposée. Ces interférences qui dépendent fortement de la géométrie moléculaire sont également influencées par divers effets multiélectroniques déterminant l'importance relative des différentes voies d'ionisation possibles de la molécule sondée rendant difficile leur interprétation. Il est donc très important de développer des modèles théoriques suffisamment précis pour pouvoir s'adresser à de telles interrogations. La compréhension du déroulement de ces processus permet d'avoir une meilleure emprise sur ceux-ci et de tirer une juste part de ce type d'expérience. Ainsi, nos développements méthodologiques récents s'inscrivent dans cette ambition de dévoiler la nature des effets multiélectroniques sur la dynamique des molécules polyélectroniques dirigées par un champ laser intense. Le développement complet de ce schéma général multi-configurationnel à champ autocohérent dépendant du temps (TDMCSCF) [4, 5] sera présenté et illustré avec quelques résultats préliminaires obtenus pour des systèmes simples. Finalement, on discutera de quelques applications utiles de l'étude de la dynamique électronique, telle que l'imagerie moléculaire dynamique.
104

Thermal conductivity of carbon nanotubes from equilibrium molecular dynamics simulations : sensitivity to modeling and simulation parameters

Dallaire, Jonathan 18 April 2018 (has links)
Le présent travail vise à apporter certaines pistes de solution concernant certaines controverses sur l'estimation de la conductivité thermique des nanotubes de carbone par simulation de dynamique moléculaire à l'équilibre avec conditions aux limites périodiques et la formule de Green-Kubo. Entre autre, différents auteurs obtiennent des résultats pouvant parfois varier de plusieurs ordres de grandeur pour un même type de nanotube. H n'y a toutefois que très peu d'études jusqu'à ce jour tentant d'expliquer ces contradictions. Dans la première partie du projet, on détermine les paramètres numériques pouvant influencer la conductivité thermique calculée avec une méthode de dynamique moléculaire à l'équilibre. On effectue ensuite une analyse de sensibilité pour plusieurs de ces paramètres afin de déterminer de quelle manière ils influencent la conductivité thermique calculée (chapitres 3 et 4). Finalement, on présente une étude sur le phénomène de fréquence de coupure lors du calcul de la conductivité thermique (chapitre 5).
105

Dynamique multi-électronique de H₂ en champ laser intense et attoseconde

Viau-Trudel, Jérémy 18 April 2018 (has links)
Dans un contexte où les sciences lasers évoluent rapidement, il est essentiel de pouvoir résoudre l’équation de Schödinger pour des systèmes multiélectroniques dans le régime non perturbatif. Nous proposons un algorithme de dynamique multi-électronique corrélée qui repose sur une partition de type Feshbach. La forme Adams de cette partition combinée avec un propagateur Cayley-Crank-Nicholson permet à cet algorithme de conserver la norme de la fonction d’onde et d’avoir un bon comportement de convergence. Nous détaillons la mise en oeuvre de cette méthodologie pour la dynamique d’ionisation en champ intense, d’abord au niveau mono-électronique, puis au niveau de N-électrons. Afin d’illustrer cette méthodologie, nous avons étudié l’ionisation de la molécule H₂ à noyaux fixes lorsqu’elle est soumise à un champ laser XUV et attoseconde.
106

Simulations moléculaires d'une nouvelle classe de liquides ioniques basés sur la fonction ammonium pour l'utilisation potentielle en tant qu'huiles lubrifiantes respectueuses de l'environnement / Molecular simulations of new ammonium-based ionic liquids as environmentally acceptable lubricant oils

Fernandes Mendonça, Ana Catarina 21 February 2013 (has links)
L'objectif de ce travail est de comprendre la structure et les interactions des liquides ioniques au contact de surfaces métalliques à l’échelle moléculaire en ayant recours aux méthodes de dynamique moléculaire. Il s’agit également d’étudier l’impact de ces caractéristiques microscopiques sur les propriétés tribologiques du système. Les liquides ioniques choisis en tant qu‘huiles lubrifiantes potentielles présentent des propriétés biodégradables et des caractéristiques tribologiques appropriées. Ils reposent sur des cations alkylammonium combinés avec des anions alkylsulfonate et bistriflamide. Notre étude est structurée en quatre parties. Elle commence par l’analyse des liquides ioniques purs puis, des liquides ioniques confinés entre deux surfaces de fer à l’équilibre et sous cisaillement, et enfin, en présence d’eau. Les propriétés structurales et dynamiques des liquides ioniques sont étudiées à travers la fonction de distribution radiale et les coefficients d’auto-diffusion. L’organisation des charges ainsi que la formation de micro-domaines en solution sont étudiées conjointement au comportement diffusif des espèces ioniques. Un champ de forces atomique, basé sur des méthodes quantiques, a été développé pour modéliser les interactions entre les liquides ioniques et la surface métallique. Des calculs DFT ont été réalisés sur des fragments de liquides ioniques en interaction avec un cluster de fer en fonction de la distance et de leur orientation. Une fonction modélisant des interactions site-site a été ajustée aux valeurs d’énergies fragment–cluster calculées par DFT afin d’obtenir les paramètres du champ de forces. Finalement, la polarisation du métal par les ions a été prise en compte en utilisant un modèle de dipôles induits afin de reproduire l’énergie d’interaction entre les charges et la surface conductrice. Avec ce modèle d’interaction, les simulations de dynamique moléculaire ont permis d’étudier la structure de l’interface entre une surface de fer plane et différents liquides ioniques. Cette analyse s’est concentrée sur l’étude du positionnement des différentes espèces au niveau de la surface, sur l’orientation des chaines alkyles et sur les profils de densité de charge. Des simulations de dynamique moléculaire hors-équilibre de liquides ioniques en interaction avec des surfaces de fer ont été réalisées en utilisant le champ de forces développé précédemment. Un protocole de simulation, basé sur une définition locale de la pression, a été développé pour prédire de manière quantitative le coefficient de friction en fonction de la valeur de la charge et du taux de cisaillement. La dépendance de la friction avec la charge, la vitesse de cisaillement, la topologie de la surface et la taille de la chaine alkyle du liquide ionique a été étudiée. La variation des forces de friction s’explique par l’arrangement spécifique des ions et l’orientation des groupements du liquide ionique à proximité de la surface. Finalement, l’effet de la présence d’eau en petite quantité dans une solution de liquide ionique a aussi été étudié à l’équilibre et hors-équilibre. Un potentiel a été construit pour décrire les interactions entre l’eau et une surface de fer en utilisant la même approche que celle décrite précédemment. Des résultats préliminaires concernant la structure de l’interface liquide-métal et la valeur du coefficient de friction ont été présentés et comparés avec ceux obtenus pour les liquides ioniques purs. / The aim of the present work is to understand at the molecular level the structure and interactions of ionic liquids at metallic surfaces, using molecular dynamics simulations, and to investigate the impact that these microscopic features can have in the tribological properties of the system. The chosen ionic liquids as potential lubricant oils present suitable ecotoxic and biodegradable properties and appropriate tribological characteristics. They are based in alkylammonium cations combined with alkylsulfonate and bistriflamide anions. Our study is divided in four parts, starting from the analyses of pure ionic liquids solutions and evolving to systems of ionic liquids confined between surfaces of iron, at the equilibrium, under shear and also in the presence of water. Structural and dynamic properties of ionic liquids are investigated in terms of the site-site radial distribution functions and the self-diffusion coefficients. The presence of charge-ordering and the formation of micro-domains in solution are discussed, as well as the diffusive behavior of the ionic species. An atomistic force field for ionic liquids interacting with a metal surface was built based on quantum methods. Density functional calculations of alkylammonium cations, alkylsulfonate and bistriflamide anions interacting with a cluster of iron atoms are performed, at a series of distances and orientations. A site-site potential function was then adjusted to the DFT interactions energies, to obtain the force field parameters. Finally, the polarization of the metal by the ions was taken into account using induced dipoles to reproduce the interaction energy between charges and a conductor surface. Using this interaction model, molecular dynamics simulations were performed to study the structure of the interfacial layer of several ionic liquids at a flat iron surface, including analyses of the positional and orientational ordering of the ions near the surface, and charge density profiles. Non-equilibrium molecular dynamics simulations of ionic liquids interacting with iron surfaces were carried out using the specific set of interaction parameters developed previously. A procedure was developed for a quantitative prediction of the friction coefficient at different loads and shear rates, based in a definition of pressure measured locally. The dependence of friction on the load, shear velocity, surface topology and length of alkyl side chains in the ionic liquid was investigated. The changes in the frictional forces were explained in terms of the specific arrangements and orientations of groups forming the ionic liquid at the vicinity of the surface. Finally, the effect of the presence of water in a small quantity in an ionic liquid solution is also studied at equilibrium and non-equilibrium. An interaction potential was build that describes the interaction between water and an iron surface, using the same approach described previously. Preliminary results are presented on the structure at the metal–liquid interface and friction coefficient, and compared with the pure ionic liquids.
107

Caractérisation de structures explorées dans les simulations de dynamique moléculaire. / Characterization of structures explored in molecular dynamics simulations.

Bougueroua, Sana 13 December 2017 (has links)
L’objectif de cette thèse est d’analyser et prédire les conformations d’un système moléculaire en combinant la théorie des graphes et la chimie computationnelle.Dans le cadre des simulations de dynamique moléculaire, une molécule peut avoir une ou plusieurs conformations au cours du temps. Dans les trajectoires de simulation de dynamique moléculaire, on peut avoir des trajectoires n’explorant qu’une seule conformation ou des trajectoires explorant plusieurs conformations, donc plusieurs transitions entre conformations sont observées. L’exploration de ces conformations dépend du temps de la simulation et de l'énergie (température) fixée dans le système. Pour avoir une bonne exploration des conformations d’un système moléculaire, il faut générer et analyser plusieurs trajectoires à différentes énergies. Notre objectif est de proposer un algorithme universel qui permet d’analyser la dynamique conformationnelle de ces trajectoires d’une façon rapide et automatique. Les trajectoires fournissent les positions cartésiennes des atomes du système moléculaire à des intervalles de temps réguliers. Chaque intervalle contenant un ensemble de positions est appelé image. L’algorithme utilise des règles de géométrie (distances, angles, etc.) sur les positions pour trouver les liaisons (liaisons covalentes, liaisons hydrogène et interactions électrostatiques) créées entre les atomes, permettant par la suite d’obtenir le graphe mixte qui modélise une conformation. Nous ne considérons un changement conformationnel que s’il y a un changement dans les liaisons calculées à partir des positions données. L’algorithme permet de donner l’ensemble des conformations explorées sur une ou plusieurs trajectoires, la durée d’exploration de chaque conformation, ainsi que le graphe de transitions qui contient tous les changements conformationnels observés.Les conformations se caractérisent par une énergie appelée énergie potentielle. Cette énergie est représentée par une courbe appelée surface d’énergie potentielle. En chimie théorique et computationnelle, certains s’intéressent à trouver des points particuliers sur cette surface. Il s'agit des minima qui représentent les conformations les plus stables et des maxima ou états de transition qui représentent les points de passage d'une conformation à une autre. En effet, d'une part, la conformation la plus stable est celle de plus basse énergie. D'autres part, pour aller d’une conformation à une autre il faut une énergie supplémentaire, le point maximum représente l'état de transition. Les méthodes développées pour calculer ces points nécessitent une connaissance de l’énergie potentielle ce qui est coûteux en temps et en calculs. Notre objectif est de proposer une méthode alternative en utilisant des mesures ah doc basées sur des propriétés des graphes qu’on a utilisées dans le premier algorithme et sans faire appel à la géométrie ni aux calculs moléculaires. Ces mesures permettent de générer des conformations avec un classement énergétique ainsi de définir le coût énergétique de chaque transition permise. Les conformations possibles avec les transitions représentent respectivement les sommets et les arcs de ce qu’on appelle le “graphe des possibles”. Les hypothèses utilisées dans le modèle proposé est que seules les liaisons hydrogène peuvent changer entre les conformations et que le nombre de liaisons hydrogène présentes dans le système permet de déterminer son coût énergétique.L’algorithme d'analyser des trajectoires a été testé sur trois types de systèmes moléculaires en phase gazeuse de taille et de complexité croissantes. Bien que la complexité théorique de l’algorithme est exponentielle (tests d’isomorphisme) les résultats ont montré que l’algorithme est rapide (quelques secondes). De plus, cet algorithme peut être facilement adapté et appliqué à d’autres systèmes. Pour la prédiction conformationnelle, le modèle proposé a été testé sur des peptides isolés. / This PhD is part of transdisciplinary works, combining graph theory and computational chemistry.In molecular dynamics simulations, a molecular system can adopt different conformations over time. Along a trajectory, one conformation or more can thus be explored. This depends on the simulation time and energy within the system. To get a good exploration of the molecular conformations, one must generate and analyse several trajectories (this can amount to thousands of trajectories). Our objective is to propose an automatic method that provides rapid and efficient analysis of the conformational dynamics explored over these trajectories. The trajectories of interest here are in cartesian coordinates of the atoms that constitute the molecular system, recorded at regular time intervals (time-steps). Each interval containing a set of positions is called a snapshot. At each snapshot, our developed algorithm uses geometric rules (distances, angles, etc.) to compute bonds (covalent bonds, hydrogen bonds and any other kind of intermolecular criterium) formed between atoms in order to get the mixed graph modelling one given conformation. Within our current definitions, a conformational change is characterized by either a change in the hydrogen bonds or in the covalent bonds. One choice or the other depends on the underlying physics and chemistry of interest. The proposed algorithm provides all conformations explored along one or several trajectories, the period of time for the existence of each one of these conformations, and also provides the graph of transitions that shows all conformational changes that have been observed during the trajectories. A user-friendly interface has been developed, that can de distributed freely.Our proposed algorithm for analysing the trajectories of molecular dynamics simulations has been tested on three kinds of gas phase molecular systems (peptides, ionic clusters). This model can be easily adapted and applied to any other molecular systems as well as to condensed matter systems, with little effort. Although the theoretical complexity of the algorithm is exponential (isomorphism tests), results have shown that the algorithm is rapid.We have also worked on computationally low cost graph methods that can be applied in order to pre-characterize specific conformations/points on a potential energy surface (it describes the energy of a system in terms of positions of the atoms). These points are the minima on the surface, representing the most stable conformations of a molecular system, and the maxima on that surface, representing transition states between two conformers. Our developed methods and algorithms aim at getting these specific points, without the prerequisite knowledge/calculation of the potential energy surface by quantum chemistry methods (or even by classical representations). By avoiding an explicit calculation of the potential energy surface by quantum chemistry methods, one saves computational time and effort. We have proposed an alternative method using ad doc measures based on properties of the graphs (already used in the first part of the PhD), without any knowledge of energy and/or molecular calculations. These measures allow getting the possible conformations with a realistic energy classification, as well as transition states, at very low computational cost. The algorithm has been tested on gas phase peptides.
108

Réponse vibrationnelle basse fréquence des verres de silice : modélisation et spectroscopie RAMAN

Mantisi, Boris 21 November 2012 (has links) (PDF)
Cette thèse porte sur l'étude et le comportement mécanique et vibrationnel du verre de silice. Des méthodes de dynamique moléculaire classique sont appliquées pour modéliser le verre à l'aide d'un potentiel BKS tronqué. La validité du modèle est testée au travers de comparaisonsstructurales et dynamiques avec des expériences de diffusion de rayons X et de neutrons. L'échantillon numérique est sollicité mécaniquement, et sa réponse à la déformation (compression hydrostatique, cisaillement à volume ou à pression cnostante dans les régimes élastiques et au-delà de la limite d'élasticité) est étudiée dans le cadre de la théorie classique de l'élasticité. L'utilisation de la dynamique moléculaire nous a permis de nous orienter vers une approche microscopique via l'étude du déplacement non-affine, qui semble expliquer des comportements macroscopiques encore peu décrits dans la littérature. En particulier, l'origine de l'anomalie du module de compressibilité dans la silice a pu être reliée à un comortement micro-plastique, et la courbe de charge (limite du domaine élastique) a été obtenue. En complément aux chargements mécaniques, des études expérimentales de spectroscopie Raman sous cellule enclume diament ont été réalisées et comparées aux spectres Raman modélisés à partir de configuration de silice chargées mécaniquement. Enfin, nous avons ou discuter de la validité de la description théorique ainsi que ses limites.
109

Etude de la structure de verres magnésio-silicatés : approche expérimentale et modélisation

Trcera, Nicolas 05 September 2008 (has links) (PDF)
Le magnésium est l'un des quatre éléments majeurs sur Terre. Il est présent dans différentes proportions dans les verres industriels et naturels (jusqu'à 30 poids% dans les komatiites, verres ultramafiques d'âge archéen). Sa présence semble influencer les propriétés physico-chimiques des verres et tout spécialement leur durabilité. Malgré ce comportement, le magnésium a été relativement peu étudié dans les verres et les études précédentes ont conduit à des contradictions sur son environnement (coordinence 4 et 6 par RMN et en coordinence 5 par diffraction des neutrons). Dans le but de lever ces contradictions, l'étude de la structure des verres magnésio-silicatés et de l'environnement du magnésium a été réalisée en utilisant deux méthodes complémentaires : la spectrométrie Raman et la spectroscopie d'absorption des rayons X. La spectroscopie Raman permet d'obtenir des informations sur la structure des verres telle que la connectivité du réseau silicaté, la variation des angles Si-O-Si ou la modification de la taille des anneaux de silicium. Plus précisément, les variations de la région des spectres Raman comprise entre 800 et 1400 cm-1 illustrent l'évolution du degré de polymérisation des verres en fonction du taux de magnésium, du taux de silicium et de la nature de l'alcalin modificateur de réseau. La spectroscopie d'absorption des rayons X au seuil K du magnésium nous a permis d'accéder à l'environnement spécifique autour de cet ion. Les spectres XANES des verres ont été comparés à ceux de références cristallines contenant du magnésium dans différents environnements (coordinence et nature des voisins notamment). Pour aller au-delà de la méthode dite " d'empreinte digitale ", et extraire des informations structurales pertinentes, les spectres XANES des cristaux et des verres ont été calculés. Les calculs ont été réalisés avec un code basé sur une méthode en ondes planes, dans l'espace réciproque avec l'utilisation de potentiel non muffin-tin. L'utilisation des calculs a permis de mettre en évidence des paramètres structuraux pertinents pour expliquer la position des structures XANES. Pour les verres, les structures initiales utilisées pour les calculs ont été obtenus par dynamique moléculaire classique puis relaxée de façon ab initio. L'environnement du magnésium (coordinence/distorsion) peut varier en fonction de la composition du verre. De ce fait, les interprétations classiquement réalisées des spectres Raman des verres doivent être considérées avec précaution
110

Conception, synthèse et études de récepteurs artificiels à plateforme polyaromatique pour la reconnaissance d’espèces d’intérêt biologique

Givelet, Cécile 12 December 2008 (has links)
La conception de récepteurs artificiels pour la reconnaissance moléculaire est un domaine très développé de la chimie supramoléculaire. Ce manuscript renferme les premières études réalisées sur une nouvelle classe de récepteurs supramoléculaires: les Discopus. Le Discopus offre un potentiel d’interactions via un cœur polyaromatique triphénylène (interactions p, effet hydrophobe) et une périphérie fonctionnelle flexible (Liaisons hydrogènes, interactions ioniques, hydrosolubilité) qui peut agir en coopérativité. Ces systèmes de reconnaissance peu préorganisés ont montré leur capacité de reconnaissance et leur aptitude à être sélectivif. Plusieurs familles de ces récepteurs ont été élaborées. Une famille de récepteurs phosphorylés reconnaît sélectivement les dérivés catéchol en milieu organique par liaisons Hydrogène et interactions p. Une seconde famille de Discopus carboxylés ont permis la reconnaissance, en milieu aqueux tamponné, de l’acétylcholine et les catécholamines par interactions ioniques et désolvatation de cibles. La préparation de cages à base triphénylène est en cours de réalisation afin d’amplifier le phénomène de reconnaissance. / The conception of artificial receptors is an intense field of research. This manuscript contains the first studies of a new class of receptors named discopus. The discopus can interact through a triphenylene core (p interactions, hydrophobic effect) and their flexible functional arms (hydrogen bonds, ionic interaction) which may cooperatively interact. These binding systems are just a little bit pre-organized and possess selective recognition properties. Several families of receptors have been prepared. Phosphorylated receptors showed a selective for catechol derivatives in organic media, through Hydrogen bond and p- interactions. In buffered media, carboxylated discopus allowed the recognition of acetylcholine and catecholamines through ionic interactions and desolvatation of the targets. The preparation of cages, based on triphenylene moieties, is in progress to increase the phenomenon of recognition.

Page generated in 0.0841 seconds