Spelling suggestions: "subject:"discovery"" "subject:"rediscovery""
391 |
A visual analytics approach for passing strateggies analysis in soccer using geometric featuresMalqui, José Luis Sotomayor January 2017 (has links)
As estrategias de passes têm sido sempre de interesse para a pesquisa de futebol. Desde os inícios do futebol, os técnicos tem usado olheiros, gravações de vídeo, exercícios de treinamento e feeds de dados para coletar informações sobre as táticas e desempenho dos jogadores. No entanto, a natureza dinâmica das estratégias de passes são bastante complexas para refletir o que está acontecendo dentro do campo e torna difícil o entendimento do jogo. Além disso, existe uma demanda crecente pela deteção de padrões e analise de estrategias de passes popularizado pelo tiki-taka utilizado pelo FC. Barcelona. Neste trabalho, propomos uma abordagem para abstrair as sequências de pases e agrupálas baseadas na geometria da trajetória da bola. Para analizar as estratégias de passes, apresentamos um esquema de visualização interátiva para explorar a frequência de uso, a localização espacial e ocorrência temporal das sequências. A visualização Frequency Stripes fornece uma visão geral da frequencia dos grupos achados em tres regiões do campo: defesa, meio e ataque. O heatmap de trajetórias coordenado com a timeline de passes permite a exploração das formas mais recorrentes no espaço e tempo. Os resultados demostram oito trajetórias comunes da bola para sequências de três pases as quais dependem da posição dos jogadores e os ângulos de passe. Demonstramos o potencial da nossa abordagem com utilizando dados de várias partidas do Campeonato Brasileiro sob diferentes casos de estudo, e reportamos os comentários de especialistas em futebol. / Passing strategies analysis has always been of interest for soccer research. Since the beginning of soccer, managers have used scouting, video footage, training drills and data feeds to collect information about tactics and player performance. However, the dynamic nature of passing strategies is complex enough to reflect what is happening in the game and makes it hard to understand its dynamics. Furthermore, there exists a growing demand for pattern detection and passing sequence analysis popularized by FC Barcelona’s tiki-taka. We propose an approach to abstract passing strategies and group them based on the geometry of the ball trajectory. To analyse passing sequences, we introduce a interactive visualization scheme to explore the frequency of usage, spatial location and time occurrence of the sequences. The frequency stripes visualization provide, an overview of passing groups frequency on three pitch regions: defense, middle, attack. A trajectory heatmap coordinated with a passing timeline allow, for the exploration of most recurrent passing shapes in temporal and spatial domains. Results show eight common ball trajectories for three-long passing sequences which depend on players positioning and on the angle of the pass. We demonstrate the potential of our approach with data from the Brazilian league under several case studies, and report feedback from a soccer expert.
|
392 |
Förmedling av discovery-verktyg vid högskole- och universitetsbibliotek : En enkätstudie om undervisande bibliotekariers inställningar till discovery-verktyg och hur de förmedlar dessa vid referenssamtal och användarundervisning / Mediating discovery tools in higher education libraries : A survey of instructing librarians' attitudes towards discovery tools and how they mediate these through reference interviews and user trainingHannerz, Einar, Wiborgh, Mika January 2014 (has links)
The purpose of this thesis is to examine how Swedish highereducation librarians mediate discovery tools to its users. Thisstudy aims to investigate higher education librarians’ generalattitudes towards discovery tools, their perception ofstudents’ discovery tool usage, and how they mediatediscovery tools to students through reference interviews anduser training. The empirical ground of this study is a semistructuredsurvey that was answered by 115 instructinglibrarians. The study concludes that although librariansgenerally have a critical attitude towards discovery tools theyalso think that the discovery tools serve a useful purpose,especially as a starting point in the information searchprocess. The study also concludes that librarians generallyperceive students’ attitudes towards discovery tools aspositive, although students do not always use the tools totheir full potential. The librarians also raised the importanceof user training that is less focused on teaching searchtechniques and more focused on information literacy. / Program: Bibliotekarie
|
393 |
Effekten av discoverytjänster på bibliotekens e-resurser? : En undersökning om Summons effekt på Chalmers bibliotek. / The impact of a discovery tool on library e-resources. : The Summon effect on Chalmers University of Technology’s Library.Carlson, Lisa January 2012 (has links)
The purpose of this essay is to examine what happens with library e-resources after implementing the discovery tool Summon. Summon provides a Google-like experience and uses multiple facet options when users need to narrow their discovery. Observations of change in the libraries e-resources with regards to database searches, click-throughs in linkresolvers and full text downloads are examined through looking at earlier reports and statistics from libraries in America and England. This provides a way to compare with Chalmers University of Technology’s Library. This essay presents results that suggest that usage drop in database searches while full text downloads and click-throughs increase when Summon is implemented. Also discussed in the essay is the importance for libraries to continuous evaluate the use of their resources to keep up with their users needs and demands. / Program: Bibliotekarie
|
394 |
Evolution and dynamics of the sectoral system of innovation : a case study of orphan drug innovation in the USDing, Jin January 2018 (has links)
Drugs for treating rare diseases had been neglected by the pharmaceutical industry for a long time, due to the complex and costly drug R&D process as well as a small unprofitable market. Since its introduction in 1983, the Orphan Drug Act (ODA) has sought to prompt the innovation of drugs for minority diseases by reducing the regulatory and economic barriers. The incentives of the ODA have been effected through market protection, tax credit, fee waiver and grants to increase the accessibility of orphan products for the public. The number of orphan drugs available in the market has risen sharply from just ten in the decade before 1983 to over 400 since 1983. This increase implies a substantial improvement of the healthcare of patients suffering rare diseases and a success of the orphan drug legislation with the aim to motivate the development and manufacture of products that have low commercial potentials. Although it is evident that the ODA has successfully stimulated drug companies to develop numerous orphan products, treatments are very expensive. The sales of blockbuster orphan drugs have provided drug companies with unusually highprofit margins and limited patient access to treatments. The dilemma presented by the ODA reflects many of the issues currently faced by policymakers. In this thesis, we have analyzed the long-term evolution of the biopharmaceutical industry. In particular, we have examined drug discovery in the period of random screening, rational design and network collaboration, and explored the influence of the ODA. We have taken the theory of the sectoral system of innovation, and combined it with the complex adaptive model of innovation, and found that the complex version of that theory is capable of explaining the comprehensive drug innovation system. A Multi-agent Based Model has been introduced to identify and analyze the dynamics of bio-pharmaceutical innovation. The model has explored the roles of the main players in the sector and the influence of their relationships embedded in the process of orphan drug innovation. Through this model, we have investigated the mechanisms of how the incentives stimulate orphan drug innovation during the period from 1983- 2012. Moreover, the model has been applied to solve the dilemma of the ODA through analyzing how to achieve the best trade-off between orphan drug developments. Drawing upon the results of the simulation, we provide a sound basis for adjusting the ODA incentives to strikes an appropriate balance between stimulating orphan drug innovation and providing benefits to society, propose some resolutions to the ODA, while also to motivate orphan drug development in a financial way. The Advice for other countries planning to enact the orphan drug legislation and directions for further research suggested by this model have been put forward.
|
395 |
Um estudo sobre agrupamento de documentos textuais em processamento de informações não estruturadas usando técnicas de "clustering" / A study about arrangement of textual documents applied to unstructured information processing using clustering techniquesWives, Leandro Krug January 1999 (has links)
Atualmente, técnicas de recuperação e análise de informações, principalmente textuais, são de extrema importância. Após o grande BOOM da Internet, muitos problemas que já eram conhecidos em contextos fechados passaram a preocupar também toda a comunidade científica. No âmbito deste trabalho os problemas relacionados à sobrecarga de informações, que ocorre devido ao grande volume de dados a disposição de uma pessoa, são os mais importantes. Visando minimizar estes problemas, este trabalho apresenta um estudo sobre métodos de agrupamento de objetos textuais (documentos no formato ASCII), onde os objetos são organizados automaticamente em grupos de objetos similares, facilitando sua localização, manipulação e análise. Decorrente deste estudo, apresenta-se uma metodologia de aplicação do agrupamento descrevendo-se suas diversas etapas. Estas etapas foram desenvolvidas de maneira que após uma ter sido realizada ela não precisa ser refeita, permitindo que a etapa seguinte seja aplicada diversas vezes sobre os mesmos dados (com diferentes parâmetros) de forma independente. Além da metodologia, realiza-se um estudo comparativo entre alguns algoritmos de agrupamento, inclusive apresentando-se um novo algoritmo mais eficiente. Este fato é comprovado em experimentos realizados nos diversos estudos de caso propostos. Outras contribuições deste trabalho incluem a implementação de uma ferramenta de agrupamento de textos que utiliza a metodologia elaborada e os algoritmos estudados; além da utilização de uma fórmula não convencional de cálculo de similaridades entre objetos (de abordagem fuzzy), aplicada a informações textuais, obtendo resultados satisfatórios. / The Internet is the vital media of today and, as being a mass media, problems known before to specific fields of Science arise. One of these problems, capable of annoying many people, is the information overload problem caused by the excessive amount of information returned in response to the user’s query. Due to the information overload problem, advanced techniques for information retrieval and analysis are needed. This study presents some aids in these fields, presenting a methodology to help users to apply the clustering process in textual data. The technique investigated is capable of grouping documents of several subjects in clusters of documents of the same subject. The groups identified can be used to simplify the process of information analysis and retrieval. This study also presents a tool that was created using the methodology and the algorithms analyzed. The tool was implemented to facilitate the process of investigation and demonstration of the study. The results of the application of a fuzzy formula, used to calculate the similarity among documents, are also presented.
|
396 |
AAE-DeMo: uma proposta de arquitetura baseada em algoritmos evolutivos para descoberta de Motifs em moléculas biológicas / AAE-DeMo: An Architecture Proposal Based on Evolutionary Algorithms for the Discovery of Motifs in Biological MoleculesSchmidt, Augusto Garcia 18 July 2017 (has links)
Submitted by Aline Batista (alinehb.ufpel@gmail.com) on 2018-04-18T14:49:00Z
No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertacao_Augusto_Schmidt.pdf: 1380825 bytes, checksum: 43661cd55f67f8a90201f1208716e6c9 (MD5) / Approved for entry into archive by Aline Batista (alinehb.ufpel@gmail.com) on 2018-04-19T14:43:09Z (GMT) No. of bitstreams: 2
Dissertacao_Augusto_Schmidt.pdf: 1380825 bytes, checksum: 43661cd55f67f8a90201f1208716e6c9 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-04-19T14:43:17Z (GMT). No. of bitstreams: 2
Dissertacao_Augusto_Schmidt.pdf: 1380825 bytes, checksum: 43661cd55f67f8a90201f1208716e6c9 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2017-07-18 / Sem bolsa / Motivos não são entidades aleatórias encontradas em cadeias de DNA, podendo ser definidos como um fenômeno não único dentro de uma sequência genética. Os motivos, além de ter padrões recorrentes nas sequências analisadas, também possuem uma função biológica. Os algoritmos evolutivos são amplamente utilizados para encontrar soluções para otimização e padrões de pesquisa na área de ciência da computação. Encontrar motivos em sequências de genes é um dos problemas
mais importantes na bioinformática e pertence à classe NP-Difícil. Portanto, é plausível investigar a hibridação de ferramentas consolidadas, mas limitadas em seu desempenho, em combinação com técnicas de algoritmos evolutivos. Este trabalho tem a premissa de mostrar uma pesquisa das principais técnicas e conceitos de algoritmos evolutivos utilizados na descoberta de padrões (motivos) na em moléculas e também um estudo aprofundado dos principais algoritmos de bioinformática que são utilizados para esta função em recentes anos por pesquisadores. Entende-se que tais técnicas em combinação, podem obter resultados interessantes para pesquisa em bioinformática. Assim, propondo uma arquitetura otimizada para descoberta de motivos em moléculas de regiões promotoras da bactéria. Usando tanto algoritmos evolutivos, como algoritmos de bioinformática e técnicas de refinação de seus principais dados fornecidos pelos algoritmos utilizados. Assim, formando uma arquitetura com melhor desempenho devido à hibridização de ferramentas consolidadas para buscar padrões em expressões genéticas. / Motifs are not random entities found in DNA strands, and can be defined as a nonunique phenomenon within a genetic sequence. Motifs, besides having recurrent patterns in the analyzed sequences, also have a biological function. Evolutionary algorithms are widely used to find solutions for optimization and research standards in the area of computer science. Finding motifs in gene sequences is one of the most important problems in bioinformatics and belongs to the NP-Difficult class. Therefore, it is plausible to investigate the hybridization of consolidated but limited tools in their performance, in combination with evolutionary algorithm techniques. This work has the premise of showing a research of the main techniques and concepts of evolutionary algorithms used in the discovery of patterns in molecules and also an in depth study of the main bioinformatics algorithms that have been used for this
function in recent years by researchers. It is understood that such techniques in combination may yield interesting results for research in bioinformatics. Thus, proposing an architecture optimized for the discovery of motifs in molecules of promoter regions of the bacterium. Using both evolutionary algorithms, bioinformatics algorithms and refining techniques of its main data provided by the algorithms used. Thus, forming an architecture with better performance due to the hybridization of consolidated tools to look for patterns in genetic expressions.
|
397 |
"Desenvolvimento de um Framework para Análise Visual de Informações Suportando Data Mining" / "Development of a Framework for Visual Analysis of Information with Data Mining suport"Jose Fernando Rodrigues Junior 22 July 2003 (has links)
No presente documento são reunidas as colaborações de inúmeros trabalhos das áreas de Bancos de Dados, Descoberta de Conhecimento em Bases de Dados, Mineração de Dados, e Visualização de Informações Auxiliada por Computador que, juntos, estruturam o tema de pesquisa e trabalho da dissertação de Mestrado: a Visualização de Informações. A teoria relevante é revista e relacionada para dar suporte às atividades conclusivas teóricas e práticas relatadas no trabalho. O referido trabalho, embasado pela substância teórica pesquisada, faz diversas contribuições à ciência em voga, a Visualização de Informações, apresentando-as através de propostas formalizadas no decorrer deste texto e através de resultados práticos na forma de softwares habilitados à exploração visual de informações. As idéias apresentadas se baseiam na exibição visual de análises numéricas estatísticas básicas, frequenciais (Frequency Plot), e de relevância (Relevance Plot). São relatadas também as contribuições à ferramenta FastMapDB do Grupo de Bases de Dados e Imagens do ICMC-USP em conjunto com os resultados de sua utilização. Ainda, é apresentado o Arcabouço, previsto no projeto original, para construção de ferramentas visuais de análise, sua arquitetura, características e utilização. Por fim, é descrito o Pipeline de visualização decorrente da junção entre o Arcabouço de visualização e a ferramenta FastMapDB. O trabalho se encerra com uma breve análise da ciência de Visualização de Informações com base na literatura estudada, sendo traçado um cenário do estado da arte desta disciplina com sugestões de futuros trabalhos. / In the present document are joined the collaborations of many works from the fields of Databases, Knowledge Discovery in Databases, Data Mining, and Computer-based Information Visualization, collaborations that, together, define the structure of the research theme and the work of the Masters Dissertation presented herein. This research topic is the Information Visualization discipline, and its relevant theory is reviewed and related to support the concluding activities, both theoretical and practical, reported in this work. The referred work, anchored by the theoretical substance that was studied, makes several contributions to the science in investigation, the Information Visualization, presenting them through formalized proposals described across this text, and through practical results in the form of software enabled to the visual exploration of information. The presented ideas are based on the visual exhibition of numeric analysis, named basic statistics, frequency analysis (Frequency Plot), and according to a relevance analysis (Relevance Plot). There are also reported the contributions to the FastMapDB tool, a visual exploration tool built by the Grupo de Bases de Dados e Imagens do ICMC-USP, the performed enhancements are listed as achieved results in the text. Also, it is presented the Framework, as previewed in this work's original proposal, projected to allow the construction of visual analysis tools; besides its description are listed its architecture, characteristics and utilization. At last, it is described the visualization Pipeline that emerges from the joining of the visualization Framework and the FastMapDB tool. The work ends with a brief analysis of the Information Visualization science based on the studied literature, it is delineated a scenario of the state of the art of this discipline along with suggestions for future work.
|
398 |
Modelagem de processo de extração de conhecimento em banco de dados para sistemas de suporte à decisão. / Modeling of knowledge discovery in databases for decision systems.Sonia Kaoru Shiba 26 June 2008 (has links)
Este trabalho apresenta a modelagem de um processo de extração de conhecimento, onde a aquisição de informações para a análise de dados têm como origem os bancos de dados transacionais e data warehouse. A mineração de dados focou-se na geração de modelos descritivos a partir de técnicas de classificação baseada no Teorema de Bayes e no método direto de extração de regras de classificação, definindo uma metodologia para a geração de modelos de aprendizagem. Foi implementado um processo de extração de conhecimento para a geração de modelos de aprendizagem para suporte à decisão, aplicando técnicas de mineração de dados para modelos descritivos e geração de regras de classificação. Explorou-se a possibilidade de transformar os modelos de aprendizagem em bases de conhecimento utilizando um banco de dados relacional, disponível para acesso via sistema especialista, para a realização de novas classificações de registros, ou então possibilitar a visualização dos resultados a partir de planilhas eletrônicas. No cenário descrito neste trabalho, a organização dos procedimentos da etapa de pré-processamento permitiu que a extração de atributos adicionais ou transformação de dados fosse realizada de forma iterativa, sem a necessidade de implementação de novos programas de extração de dados. Desta forma, foram definidas todas as atividades essenciais do pré-processamento e a seqüência em que estas devem ser realizadas, além de possibilitar a repetição dos procedimentos sem perdas das unidades codificadas para o processo de extração de dados. Um modelo de processo de extração de conhecimento iterativo e quantificável, em termos das etapas e procedimentos, foi configurado vislumbrando um produto final com o projeto da base de conhecimento para ações de retenção de clientes e regras para ações específicas com segmentos de clientes. / This work presents a model of knowledge discovery in databases, where the information for data analysis comes from a repository of transactional information systems and data-warehouse. The data mining focused on the generation of descriptive models by means of classification techniques based on the Bayes\' theorem and a extraction method of classification rules, defining a methodology to propose new learning models. The process of knowledge extraction was implemented for the generation of learning models for support the make decision, applying data mining for descriptive models and generation of classification rules. This work explored the possibility of transforming the learning models in knowledge database using a relational database, to be accessible by a specialist system, to classify new records or to allow the visualization of the results through electronic tables. The organization of the procedures in the pre-processing allowed to extract additional attributes or to transform information in an interactive process, with no need of new programs to extract the information. This way, all the essential activities of the pre-processing were defined and the sequence in which these should be developed. Additionally, this allowed the repetition of the procedures with no loss of units for the process of information extraction. A model of process for the interactive and quantifiable extraction of knowledge, in terms of the stages and procedures, was idealized in order to develop a product with the project of the knowledge databases for actions of retention of clients and rules for specific actions within clients\' segments.
|
399 |
Uma arquitetura híbrida para descoberta de conhecimento em bases de dados: teoria dos rough sets e redes neurais artificiais mapas auto-organizáveis. / An hybrid architecture for the knowledge discovery in databases: rough sets theory and artificial neural nets self-organizing maps.Renato José Sassi 28 November 2006 (has links)
As bases de dados do mundo real contêm grandes volumes de dados, e entre eles escondem-se diversas relações difíceis de descobrir através de métodos tradicionais como planilhas de cálculo e relatórios informativos operacionais. Desta forma, os sistemas de descoberta de conhecimento (Knowledge Discovery in Data Bases - KDD) surgem como uma possível solução para dessas relações extrair conhecimento que possa ser aplicado na tomada de decisão em organizações. Mesmo utilizando um KDD, tal atividade pode continuar sendo extremamente difícil devido à grande quantidade de dados que deve ser processada. Assim, nem todos os dados que compõem essas bases servem para um sistema descobrir conhecimento. Em geral, costuma-se pré-processar os dados antes de serem apresentados ao KDD, buscando reduzir a sua quantidade e também selecionar os dados mais relevantes que serão utilizados pelo sistema. Este trabalho propõe o desenvolvimento, aplicação e análise de uma Arquitetura Híbrida formada pela combinação da Teoria dos Rough Sets (Teoria dos Conjuntos Aproximados) com uma arquitetura de rede neural artificial denominada Mapas Auto-Organizáveis ou Self-Organizing Maps (SOM) para descoberta de conhecimento. O objetivo é verificar o desempenho da Arquitetura Híbrida proposta na geração de clusters (agrupamentos) em bases de dados. Em particular, alguns dos experimentos significativos foram feitos para apoiar a tomada de decisão em organizações. / Databases of the real world contain a huge amount of data within which several relations are hidden. These relations are difficult to discover by means of traditional methods such as worksheets and operational informative reports. Therefore, the knowledge discovery systems (KDD) appear as a possible solution to extract, from such relations, knowledge to be applied in decision taking. Even using a KDD system, such activity may still continue to be extremely difficult due to the huge amount of data to be processed. Thus, not all data which are part of this base will be useful for a system to discover knowledge. In general, data are usually previously processed before being presented to a knowledge discovery system in order to reduce their quantity and also to select the most relevant data to be used by the system. This research presents the development, application and analysis of an hybrid architecture formed by the combination of the Rough Sets Theory with an artificial neural net architecture named Self-Organizing Maps (SOM) to discover knowledge. The objective is to verify the performance of the hybrid architecture proposed in the generation of clusters in databases. In particular, some of the important performed experiments targeted the decision taking in organizations.
|
400 |
Geração automática de metadados: uma contribuição para a Web semântica. / Automatic metadata generation: a contribution to the semantic Web.Eveline Cruz Hora Gomes Ferreira 05 April 2006 (has links)
Esta Tese oferece uma contribuição na área de Web Semântica, no âmbito da representação e indexação de documentos, definindo um Modelo de geração automática de metadados baseado em contexto, a partir de documentos textuais na língua portuguesa, em formato não estruturado (txt). Um conjunto teórico amplo de assuntos ligados à criação de ambientes digitais semântico também é apresentado. Conforme recomendado em SemanticWeb.org, os documentos textuais aqui estudados foram automaticamente convertidos em páginas Web anotadas semanticamente, utilizando o Dublin Core como padrão para definição dos elementos de metadados, e o padrão RDF/XML para representação dos documentos e descrição dos elementos de metadados. Dentre os quinze elementos de metadados Dublin Core, nove foram gerados automaticamente pelo Modelo, e seis foram gerados de forma semi-automática. Os metadados Description e Subject foram os que necessitaram de algoritmos mais complexos, sendo obtidos através de técnicas estatísticas, de mineração de textos e de processamento de linguagem natural. A finalidade principal da avaliação do Modelo foi verificar o comportamento dos documentos convertidos para o formato RDF/XML, quando estes foram submetidos a um processo de recuperação de informação. Os elementos de metadados Description e Subject foram exaustivamente avaliados, uma vez que estes são os principais responsáveis por apreender a semântica de documentos textuais. A diversidade de contextos, a complexidade dos problemas relativos à língua portuguesa, e os novos conceitos introduzidos pelos padrões e tecnologias da Web Semântica, foram alguns dos fortes desafios enfrentados na construção do Modelo aqui proposto. Apesar de se ter utilizado técnicas não muito novas para a exploração dos conteúdos dos documentos, não se pode ignorar que os elementos inovadores introduzidos pela Web Semântica ofereceram avanços que possibilitaram a obtenção de resultados importantes nesta Tese. Como demonstrado aqui, a junção dessas técnicas com os padrões e tecnologias recomendados pela Web Semântica pode minimizar um dos maiores problemas da Web atual, e uma das fortes razões para a implementação da Web Semântica: a tendência dos mecanismos de busca de inundarem os usuários com resultados irrelevantes, por não levarem em consideração o contexto específico desejado pelo usuário. Dessa forma, é importante que se dê continuidade aos estudos e pesquisas em todas as áreas relacionadas à implementação da Web Semântica, dando abertura para que sistemas de informação mais funcionais sejam projetados / This Thesis offers a contribution to the Semantic Web area, in the scope of the representation and indexing of documents, defining an Automatic metadata generation model based on context, starting from textual documents not structured in the Portuguese language. A wide theoretical set of subjects related to the creation of semantic digital environments is also presented. As recommended in SemanticWeb.org, the textual documents studied here were automatically converted to Web pages written in semantic format, using Dublin Core as standard for definition of metadata elements, and the standard RDF/XML for representation of documents and description of the metadata elements. Among the fifteen Dublin Core metadata elements, nine were automatically generated by the Model, and six were generated in a semiautomatic manner. The metadata Description and Subject were the ones that required more complex algorithms, being obtained through statistical techniques, text mining techniques and natural language processing. The main purpose of the evaluation of the Model was to verify the behavior of the documents converted to the format RDF/XML, when these were submitted to an information retrieval process. The metadata elements Description and Subject were exhaustively evaluated, since these are the main ones responsible for learning the semantics of textual documents. The diversity of contexts, the complexity of the problems related to the Portuguese language, and the new concepts introduced by the standards and technologies of the Semantic Web, were some of the great challenges faced in the construction of the Model here proposed. In spite of having used techniques which are not very new for the exploration and exploitation of the contents of the documents, we cannot ignore that the innovative elements introduced by the Web Semantic have offered improvements that made possible the obtention of important results in this Thesis. As demonstrated here, the joining of those techniques with the standards and technologies recommended by the Semantic Web can minimize one of the largest problems of the current Web, and one of the strong reasons for the implementation of the Semantic Web: the tendency of the search mechanisms to flood the users with irrelevant results, because they do not take into account the specific context desired by the user. Therefore, it is important that the studies and research be continued in all of the areas related to the Semantic Web?s implementation, opening the door for more functional systems of information to be designed.
|
Page generated in 0.0613 seconds