• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 86
  • 52
  • 19
  • 11
  • 9
  • 5
  • 5
  • 5
  • 4
  • 1
  • 1
  • Tagged with
  • 243
  • 49
  • 47
  • 41
  • 39
  • 36
  • 35
  • 35
  • 32
  • 31
  • 31
  • 30
  • 29
  • 26
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Analýza deformačně indukovaných změn fázového složení oceli TRIP metodou EBSD / Analysis of Strain - induced Variations of Phase Composition of the TRIP Steel using EBSD Method

Pešina, Zbyněk January 2008 (has links)
The diploma thesis deals with phase composition measurement of the TRIP steel, using EBSD method. The steel was delivered as thermo-mechanically treated via two different routes. The phase composition of the steel was examined during gradual plastic deformation in the range 0 to10.99%. One route of thermo-mechanical treatment exhibited good agreement with the literature in terms of measured fraction of the retained austenite (15.6%) as well as its decrease during the deformation (to 8.9% at the maximum imposed strain). The samples of the second route did not show any agreement in either of the parameters spoken.
122

Effect of hot working characteristics on the texture development in AISI 430 and 433 ferritic stainless steel

Annan, Kofi Ahomkah 10 June 2013 (has links)
The last seven hot rolling passes of the ferritic stainless steels (FSS) AISI 430 and AISI 433 (the latter an Al-added variant of 430) were simulated on Gleeble-1500D® and Gleeble-3800TM® thermo-mechanical simulators to investigate the effect of temperature, strain rate and inter-pass time on the development of texture in these steel grades and its subsequent influence on ridging. The compression tests were carried out over a wide range of strain rates (0.1 s-1 to 5 s-1, 25 s-1 and 50 s-1) and temperatures (1100 to 820 oC) with different inter-pass times (2 s, 10 s, 20 s and 30 s). The transition temperature from dynamic recrystallization (which may introduce a texture change) to dynamic recovery (in which no texture changes are expected) was determined by examining the relationship between the mean flow stress and the deformation temperature in multi-pass tests. Both macrotexture (XRD) and microtexture (EBSD) analyses were employed to characterise and study the texture present in these steels. It was found that the texture in the central layer of the compressed sample is a strong recrystallization-type. The through-thickness textural and microstructural banding was found to be responsible for ridging in these grades of stainless steels. Dynamic recrystallization which promotes the formation of the desired ã-fibre texture leading to high ductility, formability and eventually reduction or elimination of ridging, was found to occur in both AISI 430 and AISI 433 at high temperatures, low strain rates and longer inter-pass times with multi-pass testing. Generally AISI 433 has a stronger gamma texture developed than the AISI 430 when hot rolled under similar conditions, which leads to improved ductility and less ridging in AISI 433 than AISI 430. / Dissertation (MSc)--University of Pretoria, 2012. / Materials Science and Metallurgical Engineering / unrestricted
123

Characterization of Slip Activity in the Presence of Slip Bands Using Surface-Based Microscopy Techniques

Sperry, Ryan Aaron 27 October 2020 (has links)
Further understanding of mesoscale slip mechanics is crucial to future development of polycrystalline metals with improved performance. The research contained within this thesis aims to characterize localized mesoscale slip on slip bands further through two studies. First, a comprehensive comparison of slip system identification techniques was carried out to further validate each method as well as compare advantages and disadvantages of each. Second, slip bands in the presence of grain boundaries were studied to better characterize the dislocation content and behavior. In the first study, the use of SEM-DIC, AFM, ECCI, and HR-EBSD to characterize slip-system activity was assessed on the same material volume of Ti-7Al. This study presents a robust comparison of the various methods for the first time, including an assessment of their advantages and disadvantages, and how they can be used effectively in a complementary manner. The analysis of the different approaches was carried out in a blind manner independently at three different universities. A Ti-7Al specimen was deformed in uniaxial tension to approximately 3% axial strain, and the active slip systems were independently identified using (i) trace analysis; (ii) in-SEM digital image correlation, (iii) observations of residual dislocations from ECCI, and (iv) long-range rotation gradients through HR-EBSD, with consistent trace identification in all cases. Displacement data from AFM was used to augment the SEM-DIC displacement data by providing complementary out of plane displacement information. Furthermore, short-range dislocation gradients (measured by DIC) provided insight into the residual geometrically necessary dislocation (GND) content, and was consistent with the GND content extracted from EBSD data and ECCI images, confirming the presence of residual GNDs on the dominant slip systems resulting in visible slip bands. These approaches can be used in tandem to provide multi-modal information on slip band identification, strain and orientation gradients, out-of-plane displacements, and the presence of GNDs and SSDs, all of which can be used to inform and validate the development of dislocation-based crystal plasticity and strain gradient models. In the second study, shear strain profiles along slip bands in a modified Rolls-Royce nickel superalloy (RR1000) were analyzed for a tensile sample deformed by 2%. The strain increased with distance away from a grain boundary (GB), with maximum shear strain towards the center of the grain, indicating that dislocation nucleation generally occurred in the grain interior. The strain gradients in the neighborhood of the GBs were quantified and generally correlated with rotation about the active slip system line direction. This leads to an ability to determine the active slip system in these regions. The dislocation spacing and pileup stresses were inferred. The dislocation spacing closely follows an Eshelby analytical solution for a single ended pileup of dislocations under an applied stress. The distribution of pileup stress values for GBs of a given misorientation angle follows a log-normal distribution, with no correlation between the pileup stress and the GB misorientation angle. Furthermore, there is no observed correlation between various transmissivity factors and slip band pileup stress. Hence it appears that the obstacle strength of any of the observed GBs is adequate to facilitate the dislocation pileups present in the slip bands. However, slip band transmission does correlate with transmissivity factors, with the current study focusing on the Luster and Morris m'-factor. Observation of strain profiles of transmitted bands indicate dislocation nucleation locations.
124

4D Microstructural Characterization of Electromigration and Thermal Aging Damage in Tin-Rich Solder Joints

January 2019 (has links)
abstract: As the microelectronics industry continues to decrease the size of solder joints, each joint will have to carry a greater current density, making atom diffusion due to current flow, electromigration (EM), a problem of ever-increasing severity. The rate of EM damage depends on current density, operating temperature, and the original microstructure of the solder joint, including void volume, grain orientation, and grain size. While numerous studies have investigated the post-mortem effects of EM and have tested a range of current densities and temperatures, none have been able to analyze how the same joint evolves from its initial to final microstructure. This thesis focuses on the study of EM, thermal aging, and thermal cycling in Sn-rich solder joints. Solder joints were either of controlled microstructure and orientation or had trace alloying element additions. Sn grain orientation has been linked to a solder joints’ susceptibility to EM damage, but the precise relationship between orientation and intermetallic (IMC) and void growth has not been deduced. In this research x-ray microtomography was used to nondestructively scan samples and generate 3D reconstructions of both surface and internal features such as interfaces, IMC particles, and voids within a solder joint. Combined with controlled fabrication techniques to create comparable samples and electron backscatter diffraction (EBSD) and energy-dispersive spectroscopy (EDS) analysis for grain orientation and composition analysis, this work shows how grain structure plays a critical role in EM damage and how it differs from damage accrued from thermal effects that occur simultaneously. Unique IMC growth and voiding behaviors are characterized and explained in relation to the solder microstructures that cause their formation and the possible IMC-suppression effects of trace alloying element addition are discussed. / Dissertation/Thesis / Doctoral Dissertation Materials Science and Engineering 2019
125

Získání 3D informací o struktuře vyvíjeného materiálu Si3N4 pro válcovávání legovaných drátů / 3D microstructure evaluation of developed Si3N4 material for alloyed wire rolling applications

Lövy, Vít January 2014 (has links)
This diploma thesis is devoted to the use of 3D reconstruction using EBSD method for microstructural analysis of silicon nitride ceramic material predetermined for the rolling-mill used in the wire production. Application of this method can be used for the grain structure reconstruction and basic microstructural parameters can be than extracted. The development of a suitable method for 3D reconstruction of the structure of the materials the main aim of this work. There are described the different steps begun by sample preparation from the investigated material trough the optimisation of analysis parameters up to the visualization of the grain structure. New type of sample geometry has been designed which leads to the better and faster observation of the microstructure of ceramic materials. This thesis also describes optimal reconstruction parameters such as the geometry of the assembly used in the microscope without mechanical movement of the sample or the influence of conductive coating prepared via in-situ sputtering of suitable metal, or adjustment of the electron and ion beams. Further are described two options of software which can be used for the final generation of 3D structure information and are assessed their advantages and disadvantages. The effect of the filter setting and other parameters and their influence on the resulting structural parameters are also evaluated.
126

Microstructure and Properties of Solid-State Additively Processed Alloy 600 Claddings on 304L Stainless Steel

Dalai, Biswajit January 2018 (has links)
No description available.
127

A Characterization of {101̅2} and {101̅1} Microevolution in Magnesium under Uniaxial Tension

Russell, William Donald 10 August 2018 (has links)
Hexagonal close packed (hcp) crystal structures, such as magnesium and titanium, provide formidable strength in relation to density. Current interests in reducing CO2 emissions, hold magnesium as a contender to lightweight passenger vehicles. Although significant decreases in mass could be achieved through magnesium, poor formability and energy absorption capacity limit the possibility for cost-effective production. This Master’s thesis aims to observe the microstructure and micro texture evolution induced by twinning using interrupted electron backscattered diffraction (EBSD) characterization in order to determine potential mechanisms causing early failure of magnesium alloys. This study revealed {10-11} contraction twins at stress levels contrary to the basic hypothesis of the Schmid effect revealing the importance of non-Schmid effects in damage. Furthermore, it was observed that crack nucleation occurs in magnesium alloys, due mainly to interaction between twins and microstructure defects and form inside contraction twins, causing cleavage-like terraces in the fracture surface.
128

Optimization of annealing parameters for SANDVIK 13C26 and 20C strip steels : By MODDE analysis and modified JMAK method

Ameen, Ahamed January 2019 (has links)
The process optimization of continuous annealing furnace, RHF 125, for recrystallization annealing of two steel grades, Sandvik 13C26 and Sandvik 20C has been carried out. To recreate the continuous annealing process carried out in the roller hearth furnace in the industry, samples with different cold reduction rates were chosen from ongoing production lines. An experimental heat treatment model was chosen by the ‘Design of Experiments’ approach from MODDE (from U-Metrics). The annealing temperature was chosen below the austenitization temperature for both steel grades and soaking time of 30 seconds to 240 seconds were chosen. Microscopic estimation of fraction recrystallized was performed with the help of Electron Back Scattered Diffraction, accompanied by mechanical testing methods to measure the hardness and yield strength of the steel strips. The experimental output was used to create a model to correlate between the different cold reduction rates and annealing parameters to achieve a higher degree of recrystallization along with desirable mechanical properties. Also, a modified Johnson-Mehl-Avrami-Kolomogrov model, based on hardness values, to determine the transformation kinetics by tracking the progress of recrystallization was developed. The model was verified with EBSD measurements for Sandvik 13C26 strip steels. For 20C, inhomogeneous recrystallization was observed, thus limiting the model’s adaptability to steels which exhibit homogeneous recrystallization behavior and negligible change in precipitation and/or coarsening of secondary phases. / Processoptimering av en kontinuerlig glödgningsugn, RHF 125, för rekristallisationsglödgning av två Sandvik-stål, Sandvik 13C26 och Sandvik 20C, har genomförts. För att återskapa den kontinuerliga glödgningsprocessen som utförs den verkilga processen i valdes prover och olika kallreduktionshastigheter från pågående produktionslinjer. En experimentell värmebehandlingsmodell valdes med metoden 'Design of Experiments' med MODDE (från U-Metrics). Glödgningstemperaturen valdes till en temperatur under austeniseringstemperaturen för båda stålen och hålltider varierade från 30 s till 240 s. Mikroskopisk uppskattning av fraktionen rekristalliserat material utfördes med hjälp av Electron Back Scatter Diffraktion (EBSD), åtföljd av mekaniska testmetoder för att mäta hårdheten och sträckgränsen för stålproverna. De experimentella resultaten användes för att skapa en modell för att korrelera mellan de olika reduktionshastigheterna och glödgningsparametrarna för att uppnå högre grad av rekristallisation tillsammans med önskvärda mekaniska egenskaper. Dessutom utvecklades en modifierad Johnson-Mehl-Avrami-Kolomogrov-modell, baserad på hårdhetsvärden, för att bestämma transformationskinetiken genom att spåra evolutionen för rekristallisation. Modellen verifierades genom jämförelse med EBSD-mätningarna för Sandvik 13C26 bandstål. För 20 °C observerades inhomogen rekristallisation, vilket begränsade modellens användbarhet till stål som uppvisade homogent rekristallisationsbeteende och försumbar förändring i utskiljning och/eller förgrovning av sekundära faser.
129

Development of a quantitative method for grain size measurement using EBSD : and Comparison of WC-Co materials produced with different production methods

Josefsson, Fredrik January 2012 (has links)
High performance cutting tools are essential in many industry areas. Cemented carbides (WC-Co) are common materials used for these applications due to the excellent mechanical properties. The mechanical properties of the material are manly dependent on the WC grain size distribution.To be able to tailor the material properties it is important to be able to characterize and control the WC grain size.In this study a quantitative method for WC grain size distribution measurements has been developed using the automated electron backscatter diffraction (EBSD) technique. The EBSD system was optimized for a fast and accurate measurement. Using the method approximately 2000-3000 WC grains can be measured in approximately 25 minutes. This will give reliable statistics and information about the material.The method was used to compare materials produced with three different milling methods; traditional 30l ball mill, method A and B. Two WC raw materials with different initial particle sizes, one coarser and one finer, was milled aiming for similar grain sizes in the sintered structure. The results showed some tendency for a larger fraction of large grains in the materials produced using the ball mill compared to the materials produced with method A and B. The difference between the milling methods was larger using a raw material with a coarser initial particle size.The developed quantitative method was successfully used to compare grain size distributions of different materials in a fast and quantitative way. The differences between the materials were small and materials with similar grain size distribution and mechanical properties could be produced using both the traditional ball mill method and method A and B.
130

Ultrasonic Effect on the Plastic Deformation Behavior of Metals

Kang, Jiarui 09 December 2022 (has links)
No description available.

Page generated in 0.0271 seconds